- -

Improving offline handwritten text recognition with hybrid HMM/ANN models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improving offline handwritten text recognition with hybrid HMM/ANN models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author España Boquera, Salvador es_ES
dc.contributor.author Castro-Bleda, Maria Jose es_ES
dc.contributor.author Gorbe Moya, Jorge es_ES
dc.contributor.author Zamora Martínez, Francisco Julián es_ES
dc.date.accessioned 2014-02-27T11:06:29Z
dc.date.issued 2011-04
dc.identifier.issn 0162-8828
dc.identifier.uri http://hdl.handle.net/10251/36005
dc.description.abstract This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled with Markov chains, and a Multilayer Perceptron is used to estimate the emission probabilities. This paper also presents new techniques to remove slope and slant from handwritten text and to normalize the size of text images with supervised learning methods. Slope correction and size normalization are achieved by classifying local extrema of text contours with Multilayer Perceptrons. Slant is also removed in a nonuniform way by using Artificial Neural Networks. Experiments have been conducted on offline handwritten text lines from the IAM database, and the recognition rates achieved, in comparison to the ones reported in the literature, are among the best for the same task. © 2006 IEEE. es_ES
dc.description.sponsorship The authors acknowledge the valuable help provided by Moises Pastor, Juan Miguel Vilar, Alex Graves, and Marcus Liwicki. Thanks are also due to the reviewers and the Editor-in-Chief for their many valuable comments and suggestions. This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia (TIN2006-12767) and by the BPFI 06/250 Scholarship from the Conselleria d'Empresa, Universitat i Ciencia, Generalitat Valenciana. en_EN
dc.format.extent 13 es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) es_ES
dc.relation.ispartof IEEE Transactions on Pattern Analysis and Machine Intelligence es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Handwriting recognition es_ES
dc.subject HMM es_ES
dc.subject Hybrid HMM/ANN es_ES
dc.subject Image normalization. es_ES
dc.subject Multilayer perceptron es_ES
dc.subject Neural networks es_ES
dc.subject Offline handwriting es_ES
dc.subject Image normalization es_ES
dc.subject Electric loads es_ES
dc.subject Feedforward neural networks es_ES
dc.subject Hidden Markov models es_ES
dc.subject Multilayer neural networks es_ES
dc.subject Multilayers es_ES
dc.subject Optical multilayers es_ES
dc.subject Pattern recognition systems es_ES
dc.subject Character recognition es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Improving offline handwritten text recognition with hybrid HMM/ANN models es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1109/TPAMI.2010.141
dc.relation.projectID info:eu-repo/grantAgreement/MEC//TIN2006-12767/ES/SISTEMA DE TRANSCRIPCION ASISTIDA PARA TEXTO ESCRITO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2006%2F250/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation España Boquera, S.; Castro-Bleda, MJ.; Gorbe Moya, J.; Zamora Martínez, FJ. (2011). Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 33(4):767-779. https://doi.org/10.1109/TPAMI.2010.141 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.141 es_ES
dc.description.upvformatpinicio 767 es_ES
dc.description.upvformatpfin 779 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 209107
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem