Mostrar el registro sencillo del ítem
dc.contributor.author | España Boquera, Salvador | es_ES |
dc.contributor.author | Castro-Bleda, Maria Jose | es_ES |
dc.contributor.author | Gorbe Moya, Jorge | es_ES |
dc.contributor.author | Zamora Martínez, Francisco Julián | es_ES |
dc.date.accessioned | 2014-02-27T11:06:29Z | |
dc.date.issued | 2011-04 | |
dc.identifier.issn | 0162-8828 | |
dc.identifier.uri | http://hdl.handle.net/10251/36005 | |
dc.description.abstract | This paper proposes the use of hybrid Hidden Markov Model (HMM)/Artificial Neural Network (ANN) models for recognizing unconstrained offline handwritten texts. The structural part of the optical models has been modeled with Markov chains, and a Multilayer Perceptron is used to estimate the emission probabilities. This paper also presents new techniques to remove slope and slant from handwritten text and to normalize the size of text images with supervised learning methods. Slope correction and size normalization are achieved by classifying local extrema of text contours with Multilayer Perceptrons. Slant is also removed in a nonuniform way by using Artificial Neural Networks. Experiments have been conducted on offline handwritten text lines from the IAM database, and the recognition rates achieved, in comparison to the ones reported in the literature, are among the best for the same task. © 2006 IEEE. | es_ES |
dc.description.sponsorship | The authors acknowledge the valuable help provided by Moises Pastor, Juan Miguel Vilar, Alex Graves, and Marcus Liwicki. Thanks are also due to the reviewers and the Editor-in-Chief for their many valuable comments and suggestions. This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia (TIN2006-12767) and by the BPFI 06/250 Scholarship from the Conselleria d'Empresa, Universitat i Ciencia, Generalitat Valenciana. | en_EN |
dc.format.extent | 13 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | es_ES |
dc.relation.ispartof | IEEE Transactions on Pattern Analysis and Machine Intelligence | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Handwriting recognition | es_ES |
dc.subject | HMM | es_ES |
dc.subject | Hybrid HMM/ANN | es_ES |
dc.subject | Image normalization. | es_ES |
dc.subject | Multilayer perceptron | es_ES |
dc.subject | Neural networks | es_ES |
dc.subject | Offline handwriting | es_ES |
dc.subject | Image normalization | es_ES |
dc.subject | Electric loads | es_ES |
dc.subject | Feedforward neural networks | es_ES |
dc.subject | Hidden Markov models | es_ES |
dc.subject | Multilayer neural networks | es_ES |
dc.subject | Multilayers | es_ES |
dc.subject | Optical multilayers | es_ES |
dc.subject | Pattern recognition systems | es_ES |
dc.subject | Character recognition | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Improving offline handwritten text recognition with hybrid HMM/ANN models | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1109/TPAMI.2010.141 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//TIN2006-12767/ES/SISTEMA DE TRANSCRIPCION ASISTIDA PARA TEXTO ESCRITO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2006%2F250/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | España Boquera, S.; Castro-Bleda, MJ.; Gorbe Moya, J.; Zamora Martínez, FJ. (2011). Improving offline handwritten text recognition with hybrid HMM/ANN models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 33(4):767-779. https://doi.org/10.1109/TPAMI.2010.141 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.141 | es_ES |
dc.description.upvformatpinicio | 767 | es_ES |
dc.description.upvformatpfin | 779 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 33 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 209107 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |