Osorio-Muñoz, C.; Fuster-Coma, N.; Wenwen, C.; Yangchongyi, M.; Juan, AA. (2024). Enhancing Accessibility to Analytics Courses in Higher Education through AI, Simulation, and e-Collaborative Tools. Information. 15(8). https://doi.org/10.3390/info15080430
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211438
Title:
|
Enhancing Accessibility to Analytics Courses in Higher Education through AI, Simulation, and e-Collaborative Tools
|
Author:
|
Osorio-Muñoz, Celia
Fuster-Coma, Noelia
Wenwen, Chen
Yangchongyi, Men
Juan, Angel A.
|
UPV Unit:
|
Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
|
Issued date:
|
|
Abstract:
|
[EN] This paper explores how the combination of artificial intelligence, simulation, and e-collaborative (AISEC) tools can support accessibility in analytics courses within higher education. In the era of online and blended ...[+]
[EN] This paper explores how the combination of artificial intelligence, simulation, and e-collaborative (AISEC) tools can support accessibility in analytics courses within higher education. In the era of online and blended learning, addressing the diverse needs of students with varying linguistic backgrounds and analytical proficiencies poses a significant challenge. This paper discusses how the combination of AISEC tools can contribute to mitigating barriers to accessibility for students undertaking analytics courses. Through a comprehensive review of existing literature and empirical insights from practical implementations, this paper shows the synergistic benefits of using AISEC tools for facilitating interactive engagement in analytics courses. Furthermore, the manuscript outlines practical strategies and best practices derived from real-world experiences carried out in different universities in Spain, Ireland, and Portugal.
[-]
|
Subjects:
|
Higher education
,
Artificial intelligence
,
Analytics
,
E-collaborative tools
|
Copyrigths:
|
Reconocimiento (by)
|
Source:
|
Information. (eissn:
2078-2489
)
|
DOI:
|
10.3390/info15080430
|
Publisher:
|
MDPI AG
|
Publisher version:
|
https://doi.org/10.3390/info15080430
|
Project ID:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138860NB-I00/ES/INTELIGENCIA ARTIFICIAL E INTERNET DE LAS COSAS PARA OPTIMIZAR EL CONSUMO ENERGETICO EN EL TRANSPORTE CON VEHICULOS ELECTRICOS/
info:eu-repo/grantAgreement/GVA//INVEST%2F2023%2F304/
info:eu-repo/grantAgreement/MICINN//RED2022-134703-T/
|
Thanks:
|
This work was founded by the Investigo Program of the Generalitat Valenciana (INVEST/2023/304), Coca-Cola Europacific Partners, and the Spanish Ministry of Science and Innovation (PID2022-138860NB-I00 and RED2022-134703-T).[+]
This work was founded by the Investigo Program of the Generalitat Valenciana (INVEST/2023/304), Coca-Cola Europacific Partners, and the Spanish Ministry of Science and Innovation (PID2022-138860NB-I00 and RED2022-134703-T).
[-]
|
Type:
|
Artículo
|