- -

Enhancing Accessibility to Analytics Courses in Higher Education through AI, Simulation, and e-Collaborative Tools

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing Accessibility to Analytics Courses in Higher Education through AI, Simulation, and e-Collaborative Tools

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Osorio-Muñoz, Celia es_ES
dc.contributor.author Fuster-Coma, Noelia es_ES
dc.contributor.author Wenwen, Chen es_ES
dc.contributor.author Yangchongyi, Men es_ES
dc.contributor.author Juan, Angel A. es_ES
dc.date.accessioned 2024-11-06T19:19:12Z
dc.date.available 2024-11-06T19:19:12Z
dc.date.issued 2024-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211438
dc.description.abstract [EN] This paper explores how the combination of artificial intelligence, simulation, and e-collaborative (AISEC) tools can support accessibility in analytics courses within higher education. In the era of online and blended learning, addressing the diverse needs of students with varying linguistic backgrounds and analytical proficiencies poses a significant challenge. This paper discusses how the combination of AISEC tools can contribute to mitigating barriers to accessibility for students undertaking analytics courses. Through a comprehensive review of existing literature and empirical insights from practical implementations, this paper shows the synergistic benefits of using AISEC tools for facilitating interactive engagement in analytics courses. Furthermore, the manuscript outlines practical strategies and best practices derived from real-world experiences carried out in different universities in Spain, Ireland, and Portugal. es_ES
dc.description.sponsorship This work was founded by the Investigo Program of the Generalitat Valenciana (INVEST/2023/304), Coca-Cola Europacific Partners, and the Spanish Ministry of Science and Innovation (PID2022-138860NB-I00 and RED2022-134703-T). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Information es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Higher education es_ES
dc.subject Artificial intelligence es_ES
dc.subject Analytics es_ES
dc.subject E-collaborative tools es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Enhancing Accessibility to Analytics Courses in Higher Education through AI, Simulation, and e-Collaborative Tools es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/info15080430 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138860NB-I00/ES/INTELIGENCIA ARTIFICIAL E INTERNET DE LAS COSAS PARA OPTIMIZAR EL CONSUMO ENERGETICO EN EL TRANSPORTE CON VEHICULOS ELECTRICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//INVEST%2F2023%2F304/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RED2022-134703-T/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Osorio-Muñoz, C.; Fuster-Coma, N.; Wenwen, C.; Yangchongyi, M.; Juan, AA. (2024). Enhancing Accessibility to Analytics Courses in Higher Education through AI, Simulation, and e-Collaborative Tools. Information. 15(8). https://doi.org/10.3390/info15080430 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/info15080430 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2078-2489 es_ES
dc.relation.pasarela S\527286 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem