Díaz-Bedoya, D.; González-Rodríguez, M.; Clairand-Gómez, J.; Serrano-Guerrero, JX.; Escrivá-Escrivá, G. (2023). Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities. Energy Conversion and Management. 296:1-16. https://doi.org/10.1016/j.enconman.2023.117618
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211614
Title: | Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities | |||
Author: | Díaz-Bedoya, Daniel González-Rodríguez, Mario Clairand-Gómez, Jean-Michel Serrano-Guerrero, Johnny Xavier | |||
UPV Unit: |
|
|||
Issued date: |
|
|||
Abstract: |
[EN] The integration of solar energy into power systems is essential for the future sustainability of power systems, particularly for isolated systems, such as microgrids, where establishing a primary transmission network ...[+]
|
|||
Subjects: |
|
|||
Copyrigths: | Embargado | |||
Source: |
|
|||
DOI: |
|
|||
Publisher: |
|
|||
Publisher version: | https://doi.org/10.1016/j.enconman.2023.117618 | |||
Project ID: |
|
|||
Thanks: |
|
|||
Type: |
|