- -

Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities

Show full item record

Díaz-Bedoya, D.; González-Rodríguez, M.; Clairand-Gómez, J.; Serrano-Guerrero, JX.; Escrivá-Escrivá, G. (2023). Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities. Energy Conversion and Management. 296:1-16. https://doi.org/10.1016/j.enconman.2023.117618

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211614

Files in this item

Item Metadata

Title: Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities
Author: Díaz-Bedoya, Daniel González-Rodríguez, Mario Clairand-Gómez, Jean-Michel Serrano-Guerrero, Johnny Xavier Escrivá-Escrivá, Guillermo
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Issued date:
Embargo end date: 2025-11-01
Abstract:
[EN] The integration of solar energy into power systems is essential for the future sustainability of power systems, particularly for isolated systems, such as microgrids, where establishing a primary transmission network ...[+]
Subjects: Deep learning , Forecasting , Random Forest , Recurrent Neural Networks , Solar energy
Copyrigths: Embargado
Source:
Energy Conversion and Management. (issn: 0196-8904 )
DOI: 10.1016/j.enconman.2023.117618
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.enconman.2023.117618
Project ID:
info:eu-repo/grantAgreement/UDLA//SIS.MGR.23.13.01/
info:eu-repo/grantAgreement/UDLA//IEA.JCG.20.01./
Thanks:
This work has been funded by Universidad de las Americas, Ecuador, projects SIS.MGR.23.13.01 and IEA.JCG.20.01.
Type: Artículo

recommendations

 

This item appears in the following Collection(s)

Show full item record