- -

Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz-Bedoya, Daniel es_ES
dc.contributor.author González-Rodríguez, Mario es_ES
dc.contributor.author Clairand-Gómez, Jean-Michel es_ES
dc.contributor.author Serrano-Guerrero, Johnny Xavier es_ES
dc.contributor.author Escrivá-Escrivá, Guillermo es_ES
dc.date.accessioned 2024-11-11T19:03:46Z
dc.date.available 2024-11-11T19:03:46Z
dc.date.issued 2023-11-15 es_ES
dc.identifier.issn 0196-8904 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211614
dc.description.abstract [EN] The integration of solar energy into power systems is essential for the future sustainability of power systems, particularly for isolated systems, such as microgrids, where establishing a primary transmission network is difficult. Therefore, the development of prediction methods becomes crucial to enable accurate forecasting of solar energy generation, facilitating efficient planning and operation of these systems and ensuring their long-term viability. This study proposes distinct forecasting models for solar irradiance forecasting: an autoregressive (AR) model, a Random Forest model, and a Long Short-Term Memory (LSTM) neural network. The methodology involves preprocessing the historical solar irradiance data and performing feature engineering to extract relevant input features. The architectural design, hyperparameter tuning, and training procedures of each model are discussed in detail. The findings indicate that the LSTM model exhibits enhanced performance compared to the AR model, while maintaining similar predictive accuracy to the Random Forest model in forecasting global solar irradiance. Both models yield a mean absolute percentage error of roughly 25%, with the LSTM exhibiting the lower error rate. Moreover, the LSTM model showcases an advancement over the AR model, resulting in a reduction of approximately 10 W/m2 for both root mean square error and mean absolute error. This finding highlights the effectiveness of LSTM networks in capturing long-term dependencies for accurate solar irradiance forecasting. Furthermore, an analysis of the models' interpretability is conducted, offering valuable insights into the key factors that contribute to the shaping of solar irradiance patterns. These insights hold practical significance for the optimization of renewable energy systems. es_ES
dc.description.sponsorship This work has been funded by Universidad de las Americas, Ecuador, projects SIS.MGR.23.13.01 and IEA.JCG.20.01. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Energy Conversion and Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Deep learning es_ES
dc.subject Forecasting es_ES
dc.subject Random Forest es_ES
dc.subject Recurrent Neural Networks es_ES
dc.subject Solar energy es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.enconman.2023.117618 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UDLA//SIS.MGR.23.13.01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UDLA//IEA.JCG.20.01./ es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2025-11-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Díaz-Bedoya, D.; González-Rodríguez, M.; Clairand-Gómez, J.; Serrano-Guerrero, JX.; Escrivá-Escrivá, G. (2023). Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities. Energy Conversion and Management. 296:1-16. https://doi.org/10.1016/j.enconman.2023.117618 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.enconman.2023.117618 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 296 es_ES
dc.relation.pasarela S\509159 es_ES
dc.contributor.funder Universidad de las Américas, Ecuador es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem