- -

Virtual Experience Toolkit: An End-to-End Automated 3D Scene Virtualization Framework Implementing Computer Vision Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Virtual Experience Toolkit: An End-to-End Automated 3D Scene Virtualization Framework Implementing Computer Vision Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mora, Pau es_ES
dc.contributor.author García-Moll, Clara es_ES
dc.contributor.author Ivorra, Eugenio es_ES
dc.contributor.author Ortega Pérez, Mario es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.date.accessioned 2024-11-11T19:03:55Z
dc.date.available 2024-11-11T19:03:55Z
dc.date.issued 2024-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211621
dc.description.abstract [EN] Virtualization plays a critical role in enriching the user experience in Virtual Reality (VR) by offering heightened realism, increased immersion, safer navigation, and newly achievable levels of interaction and personalization, specifically in indoor environments. Traditionally, the creation of virtual content has fallen under one of two broad categories: manual methods crafted by graphic designers, which are labor-intensive and sometimes lack precision; traditional Computer Vision (CV) and Deep Learning (DL) frameworks that frequently result in semi-automatic and complex solutions, lacking a unified framework for both 3D reconstruction and scene understanding, often missing a fully interactive representation of the objects and neglecting their appearance. To address these diverse challenges and limitations, we introduce the Virtual Experience Toolkit (VET), an automated and user-friendly framework that utilizes DL and advanced CV techniques to efficiently and accurately virtualize real-world indoor scenarios. The key features of VET are the use of ScanNotate, a retrieval and alignment tool that enhances the precision and efficiency of its precursor, supported by upgrades such as a preprocessing step to make it fully automatic and a preselection of a reduced list of CAD to speed up the process, and the implementation in a user-friendly and fully automatic Unity3D application that guides the users through the whole pipeline and concludes in a fully interactive and customizable 3D scene. The efficacy of VET is demonstrated using a diversified dataset of virtualized 3D indoor scenarios, supplementing the ScanNet dataset. es_ES
dc.description.sponsorship This research was funded by the European Community's Horizon 2020 (FETPROACT-2018-2020). Grant Agreement RIA-101017727 Experience. The author P.M. is the beneficiary of a University Teacher Training scholarship granted by the Spanish Ministry of Universities. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject 3D scene understanding es_ES
dc.subject Indoor scenes es_ES
dc.subject Virtual reality (VR) es_ES
dc.subject ScanNet es_ES
dc.subject Scene reconstruction es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Virtual Experience Toolkit: An End-to-End Automated 3D Scene Virtualization Framework Implementing Computer Vision Techniques es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s24123837 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101017727/EU/The ¿Extended-Personal Reality¿: augmented recording and transmission of virtual senses through artificial-IntelligENCE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Mora, P.; García-Moll, C.; Ivorra, E.; Ortega Pérez, M.; Alcañiz Raya, ML. (2024). Virtual Experience Toolkit: An End-to-End Automated 3D Scene Virtualization Framework Implementing Computer Vision Techniques. Sensors. 24(12). https://doi.org/10.3390/s24123837 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s24123837 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 38931621 es_ES
dc.identifier.pmcid PMC11207716 es_ES
dc.relation.pasarela S\520492 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Universidades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem