Mostrar el registro completo del ítem
Ferri-Borredà, P.; Romero-Garcia, N.; Badenes, R.; Lora-Pablos, D.; García Morales, T.; Gómez De La Cámara, A.; Garcia-Gomez, JM.... (2023). Extremely missing numerical data in Electronic Health Records for machine learning can be managed through simple imputation methods considering informative missingness: A comparative of solutions in a COVID-19 mortality case study. Computer Methods and Programs in Biomedicine. 242. https://doi.org/10.1016/j.cmpb.2023.107803
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211720
Título: | Extremely missing numerical data in Electronic Health Records for machine learning can be managed through simple imputation methods considering informative missingness: A comparative of solutions in a COVID-19 mortality case study | |
Autor: | Romero-Garcia, Nekane Badenes, Rafael Lora-Pablos, David García Morales, Teresa Gómez de la Cámara, Agustín | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Background and objective: Reusing Electronic Health Records (EHRs) for Machine Learning (ML) leads on many occasions to extremely incomplete and sparse tabular datasets, which can hinder the model development processes ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial (by-nc) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.cmpb.2023.107803 | |
Coste APC: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
This work was supported by FONDO SUPERA COVID-19 by CRUE-Santander Bank grant "Severity Subgroup Discovery and Classification on COVID-19 Real World Data through Machine Learning and Data Quality assessment (SUBCOVERWD-19) ...[+]
|
|
Tipo: |
|