- -

Extremely missing numerical data in Electronic Health Records for machine learning can be managed through simple imputation methods considering informative missingness: A comparative of solutions in a COVID-19 mortality case study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extremely missing numerical data in Electronic Health Records for machine learning can be managed through simple imputation methods considering informative missingness: A comparative of solutions in a COVID-19 mortality case study

Mostrar el registro completo del ítem

Ferri-Borredà, P.; Romero-Garcia, N.; Badenes, R.; Lora-Pablos, D.; García Morales, T.; Gómez De La Cámara, A.; Garcia-Gomez, JM.... (2023). Extremely missing numerical data in Electronic Health Records for machine learning can be managed through simple imputation methods considering informative missingness: A comparative of solutions in a COVID-19 mortality case study. Computer Methods and Programs in Biomedicine. 242. https://doi.org/10.1016/j.cmpb.2023.107803

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211720

Ficheros en el ítem

Metadatos del ítem

Título: Extremely missing numerical data in Electronic Health Records for machine learning can be managed through simple imputation methods considering informative missingness: A comparative of solutions in a COVID-19 mortality case study
Autor: Ferri-Borredà, Pablo Romero-Garcia, Nekane Badenes, Rafael Lora-Pablos, David García Morales, Teresa Gómez de la Cámara, Agustín Garcia-Gomez, Juan M. Sáez Silvestre, Carlos
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] Background and objective: Reusing Electronic Health Records (EHRs) for Machine Learning (ML) leads on many occasions to extremely incomplete and sparse tabular datasets, which can hinder the model development processes ...[+]
Palabras clave: Machine learning , Missing data , Data imputation , Informative missingness , Electronic health records , COVID-19
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Computer Methods and Programs in Biomedicine. (issn: 0169-2607 )
DOI: 10.1016/j.cmpb.2023.107803
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.cmpb.2023.107803
Coste APC: 2864.07
Código del Proyecto:
info:eu-repo/grantAgreement/MCIU//FPU18%2F06441/
Agradecimientos:
This work was supported by FONDO SUPERA COVID-19 by CRUE-Santander Bank grant "Severity Subgroup Discovery and Classification on COVID-19 Real World Data through Machine Learning and Data Quality assessment (SUBCOVERWD-19) ...[+]
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem