Aparicio-Collado, JL.; Zheng, Q.; Molina Mateo, J.; Torregrosa Cabanilles, C.; Vidaurre, A.; Serrano-Aroca, Á.; Sabater I Serra, R. (2023). Engineered Highly Porous Polyvinyl Alcohol Hydrogels with
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Graphene
Nanosheets for Musculoskeletal Tissue Engineering:
Morphology, Water Sorption, Thermal, Mechanical, Electrical
Properties, and Biocompatibility. Materials. 16(8). https://doi.org/10.3390/ma16083114
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/211872
Título:
|
Engineered Highly Porous Polyvinyl Alcohol Hydrogels with
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Graphene
Nanosheets for Musculoskeletal Tissue Engineering:
Morphology, Water Sorption, Thermal, Mechanical, Electrical
Properties, and Biocompatibility
|
Autor:
|
Aparicio-Collado, José Luís
Zheng, Qiqi
Molina Mateo, José
Torregrosa Cabanilles, Constantino
Vidaurre, Ana
Serrano-Aroca, Ángel
Sabater i Serra, Roser
|
Entidad UPV:
|
Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
|
Fecha difusión:
|
|
Resumen:
|
[EN] Electroactive composite materials are very promising for musculoskeletal tissue engineering because they can be applied in combination with electrostimulation. In this context, novel graphene-based poly(3-hydroxybut ...[+]
[EN] Electroactive composite materials are very promising for musculoskeletal tissue engineering because they can be applied in combination with electrostimulation. In this context, novel graphene-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyvinyl alcohol (PHBV/PVA) semi-interpenetrated networks (semi-IPN) hydrogels were engineered with low amounts of graphene (G) nanosheets dispersed within the polymer matrix to endow them with electroactive properties. The nanohybrid hydrogels, obtained by applying a hybrid solvent casting-freeze-drying method, show an interconnected porous structure and a high water-absorption capacity (swelling degree > 1200%). The thermal characterization indicates that the structure presents microphase separation, with PHBV microdomains located between the PVA network. The PHBV chains located in the microdomains are able to crystallize; even more after the addition of G nanosheets, which act as a nucleating agent. Thermogravimetric analysis indicates that the degradation profile of the semi-IPN is located between those of the neat components, with an improved thermal stability at high temperatures (>450 degrees C) after the addition of G nanosheets. The mechanical (complex modulus) and electrical properties (surface conductivity) significantly increase in the nanohybrid hydrogels with 0.2% of G nanosheets. Nevertheless, when the amount of G nanoparticles increases fourfold (0.8%), the mechanical properties diminish and the electrical conductivity does not increase proportionally, suggesting the presence of G aggregates. The biological assessment (C2C12 murine myoblasts) indicates a good biocompatibility and proliferative behavior. These results reveal a new conductive and biocompatible semi-IPN with remarkable values of electrical conductivity and ability to induce myoblast proliferation, indicating its great potential for musculoskeletal tissue engineering.
[-]
|
Palabras clave:
|
Carbon-based nanocomposite
,
Conductive cell substrate
,
Semi-IPN hydrogel
,
Graphene
nanosheets
,
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
,
Polyvinyl alcohol
|
Derechos de uso:
|
Reconocimiento (by)
|
Fuente:
|
Materials. (eissn:
1996-1944
)
|
DOI:
|
10.3390/ma16083114
|
Editorial:
|
MDPI AG
|
Versión del editor:
|
https://doi.org/10.3390/ma16083114
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-119333RB-I00/ES/SOPORTES BIOFUNCIONALES CON CAPACIDAD OSTEOINDUCTORA Y ANTIMICROBIANA PARA INGENIERIA TISULAR OSEA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097862-B-C21/ES/MICROENTORNOS BIOACTIVOS, ELECTROCONDUCTIVOS Y ANTIMICROBIANOS CON CAPACIDAD DE ESTIMULAR LA REGENERACION OSEA Y PREVENIR INFECCIONES MULTIRRESISTENTES/
info:eu-repo/grantAgreement/UCV//2020-231-006UCV/
|
Agradecimientos:
|
This research was funded by Spanish Ministry of Science and Innovation (MCINN, Agencia
Estatal de Investigación/FEDER funds), grants RTI2018-097862-B-C21 (awarded to R.S.i.S. and J.M.-
M.) and PID2020-119333RB-I00/AEI/ ...[+]
This research was funded by Spanish Ministry of Science and Innovation (MCINN, Agencia
Estatal de Investigación/FEDER funds), grants RTI2018-097862-B-C21 (awarded to R.S.i.S. and J.M.-
M.) and PID2020-119333RB-I00/AEI/10.13039/501100011033 (awarded to Á.S.-A.). Á.S.-A. also
acknowledges the Fundación Universidad Católica de Valencia San Vicente Mártir through the Grant
2020-231-006UCV. The CIBER-BBN initiative is funded by the VI National R&D&I Plan 2008-2011,
Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud
Carlos III with assistance from the European Regional Development.
[-]
|
Tipo:
|
Artículo
|