Mostrar el registro completo del ítem
Ramírez, E.; Ruiperez-Campillo, S.; Casado-Arroyo, R.; Merino, JL.; Vogt, JE.; Castells, F.; Millet Roig, J. (2024). The art of selecting the ECG input in neural networks to classify heart diseases: a dual focus on maximizing information and reducing redundancy. Frontiers in Physiology. 15. https://doi.org/10.3389/fphys.2024.1452829
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/212059
Título: | The art of selecting the ECG input in neural networks to classify heart diseases: a dual focus on maximizing information and reducing redundancy | |
Autor: | Ramírez, Elisa Casado-Arroyo, Rubén Merino, José Luis Vogt, Julia E. | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Background and Objectives Accurate diagnosis of cardiovascular diseases often relies on the electrocardiogram (ECG). Since the cardiac vector is located within a three-dimensional space and the standard ECG comprises ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento (by) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.3389/fphys.2024.1452829 | |
Código del Proyecto: |
|
|
Agradecimientos: |
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work has been supported by PID 2022-142514OB-I00 (National Research Program, Ministerio de ...[+]
|
|
Tipo: |
|