- -

The art of selecting the ECG input in neural networks to classify heart diseases: a dual focus on maximizing information and reducing redundancy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The art of selecting the ECG input in neural networks to classify heart diseases: a dual focus on maximizing information and reducing redundancy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramírez, Elisa es_ES
dc.contributor.author Ruiperez-Campillo, Samuel es_ES
dc.contributor.author Casado-Arroyo, Rubén es_ES
dc.contributor.author Merino, José Luis es_ES
dc.contributor.author Vogt, Julia E. es_ES
dc.contributor.author Castells, Francisco es_ES
dc.contributor.author Millet Roig, José es_ES
dc.date.accessioned 2024-11-20T19:09:56Z
dc.date.available 2024-11-20T19:09:56Z
dc.date.issued 2024-10-07 es_ES
dc.identifier.issn 1664-042X es_ES
dc.identifier.uri http://hdl.handle.net/10251/212059
dc.description.abstract [EN] Background and Objectives Accurate diagnosis of cardiovascular diseases often relies on the electrocardiogram (ECG). Since the cardiac vector is located within a three-dimensional space and the standard ECG comprises 12 projections or leads derived from it, redundant information is inherently present. This study aims to quantify this redundancy and its impact on classification tasks using Convolutional Neural Networks (CNNs) in cardiovascular diseases.Methods We employed signal theory and mutual information to introduce a novel redundancy metric and explored techniques for redundancy augmentation and reduction. This involved lead selection and transformation to evaluate the effects on neural network performance.Results Our findings indicate that optimizing input configurations through redundancy reduction techniques can enhance the performance of deep learning models in cardiovascular diagnostics, provided that the information is preserved and minimally distorted.Conclusion For the first time, this research has quantified the redundancy present in the input by validating various redundancy reduction techniques using a CNN. This discovery paves the way for advancing biomedical signal processing research, simplifying model complexity, and enhancing diagnostic performance in cardiovascular medicine within reduced lead systems, such as Holter monitors or wearables. es_ES
dc.description.sponsorship The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work has been supported by PID 2022-142514OB-I00 (National Research Program, Ministerio de Ciencia e Innovacion, Spanish Government) and CIBERCV CB16/11/00486 (Instituto de Salud Carlos III). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Physiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cardiovascular diseases es_ES
dc.subject Electrocardiogram es_ES
dc.subject Deep learning es_ES
dc.subject Redundancy reduction es_ES
dc.subject Model performance es_ES
dc.subject Cardiac signal processing es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title The art of selecting the ECG input in neural networks to classify heart diseases: a dual focus on maximizing information and reducing redundancy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphys.2024.1452829 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-142514OB-I00/ES/NUEVAS PERSPECTIVAS Y HERRAMIENTAS PARA IDENTIFICAR REGIONES FUNCIONALES CRITICAS DE TEJIDO ARRITMOGENICO MEDIANTE PROCESADO ARRAY DE MAPAS LOCALES EN CATHETER MULTIELECTRODO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00486/ES/ENFERMEDADES CARDIOVASCULARES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Ramírez, E.; Ruiperez-Campillo, S.; Casado-Arroyo, R.; Merino, JL.; Vogt, JE.; Castells, F.; Millet Roig, J. (2024). The art of selecting the ECG input in neural networks to classify heart diseases: a dual focus on maximizing information and reducing redundancy. Frontiers in Physiology. 15. https://doi.org/10.3389/fphys.2024.1452829 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphys.2024.1452829 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.identifier.pmid 39434723 es_ES
dc.identifier.pmcid PMC11491564 es_ES
dc.relation.pasarela S\531803 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem