Mostrar el registro sencillo del ítem
dc.contributor.author | Ramírez, Elisa | es_ES |
dc.contributor.author | Ruiperez-Campillo, Samuel | es_ES |
dc.contributor.author | Casado-Arroyo, Rubén | es_ES |
dc.contributor.author | Merino, José Luis | es_ES |
dc.contributor.author | Vogt, Julia E. | es_ES |
dc.contributor.author | Castells, Francisco | es_ES |
dc.contributor.author | Millet Roig, José | es_ES |
dc.date.accessioned | 2024-11-20T19:09:56Z | |
dc.date.available | 2024-11-20T19:09:56Z | |
dc.date.issued | 2024-10-07 | es_ES |
dc.identifier.issn | 1664-042X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/212059 | |
dc.description.abstract | [EN] Background and Objectives Accurate diagnosis of cardiovascular diseases often relies on the electrocardiogram (ECG). Since the cardiac vector is located within a three-dimensional space and the standard ECG comprises 12 projections or leads derived from it, redundant information is inherently present. This study aims to quantify this redundancy and its impact on classification tasks using Convolutional Neural Networks (CNNs) in cardiovascular diseases.Methods We employed signal theory and mutual information to introduce a novel redundancy metric and explored techniques for redundancy augmentation and reduction. This involved lead selection and transformation to evaluate the effects on neural network performance.Results Our findings indicate that optimizing input configurations through redundancy reduction techniques can enhance the performance of deep learning models in cardiovascular diagnostics, provided that the information is preserved and minimally distorted.Conclusion For the first time, this research has quantified the redundancy present in the input by validating various redundancy reduction techniques using a CNN. This discovery paves the way for advancing biomedical signal processing research, simplifying model complexity, and enhancing diagnostic performance in cardiovascular medicine within reduced lead systems, such as Holter monitors or wearables. | es_ES |
dc.description.sponsorship | The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work has been supported by PID 2022-142514OB-I00 (National Research Program, Ministerio de Ciencia e Innovacion, Spanish Government) and CIBERCV CB16/11/00486 (Instituto de Salud Carlos III). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Physiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cardiovascular diseases | es_ES |
dc.subject | Electrocardiogram | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Redundancy reduction | es_ES |
dc.subject | Model performance | es_ES |
dc.subject | Cardiac signal processing | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | The art of selecting the ECG input in neural networks to classify heart diseases: a dual focus on maximizing information and reducing redundancy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphys.2024.1452829 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-142514OB-I00/ES/NUEVAS PERSPECTIVAS Y HERRAMIENTAS PARA IDENTIFICAR REGIONES FUNCIONALES CRITICAS DE TEJIDO ARRITMOGENICO MEDIANTE PROCESADO ARRAY DE MAPAS LOCALES EN CATHETER MULTIELECTRODO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CB16%2F11%2F00486/ES/ENFERMEDADES CARDIOVASCULARES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Ramírez, E.; Ruiperez-Campillo, S.; Casado-Arroyo, R.; Merino, JL.; Vogt, JE.; Castells, F.; Millet Roig, J. (2024). The art of selecting the ECG input in neural networks to classify heart diseases: a dual focus on maximizing information and reducing redundancy. Frontiers in Physiology. 15. https://doi.org/10.3389/fphys.2024.1452829 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphys.2024.1452829 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.identifier.pmid | 39434723 | es_ES |
dc.identifier.pmcid | PMC11491564 | es_ES |
dc.relation.pasarela | S\531803 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |