- -

Wearable Low-Cost and Low-Energy Consumption Gas Sensor With Machine Learning to Recognize Outdoor Areas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wearable Low-Cost and Low-Energy Consumption Gas Sensor With Machine Learning to Recognize Outdoor Areas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wang, Jianchen es_ES
dc.contributor.author Parra, Lorena es_ES
dc.contributor.author Lacuesta, Raquel es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Lorenz, Pascal es_ES
dc.date.accessioned 2024-12-03T19:06:11Z
dc.date.available 2024-12-03T19:06:11Z
dc.date.issued 2024-10-01 es_ES
dc.identifier.issn 1530-437X es_ES
dc.identifier.uri http://hdl.handle.net/10251/212619
dc.description.abstract [EN] Urban air quality, impacted by human-made pollution, impacts health and requires continuous monitoring. MQ sensors are the preferred air quality sensors despite their high energy consumption due to their cost, requiring the use machine learning to classify different types of air. The aim of this article is to evaluate a monitoring solution with low-cost and low-energy consumption to classify urban and rural air. A single MQ sensor will be used with a network with edge and fog computing to balance the energy consumption. Edge computing was included in the node for feature extraction, and fog computing was applied in the smartphone to classify the data using machine learning. Different sensors and time buffers are compared in order to find the adequate sensor for data generation and time buffer for feature extraction. The results indicate that it has been possible to achieve accuracies of 100% using a single sensor, the MQ2, with time buffers of 45-60 measures. With this proposal, it is possible to reduce the energy consumed by data gathering to 25% of the original consumption due to the use of a single sensor, due to the reduction in the sensors used in the previous prototype. Moreover, it has been possible to reduce the energy linked to data forwarding by almost 97% due to using a time buffer. es_ES
dc.description.sponsorship This work was supported in part by the Spanish Science and Innovation Ministry under Contract PID2022-136779OB-C31; and in part by Conselleria de Educacion, Universidades y Empleo through the Sub-venciones para estancias de personal investigador doctor en centros deinvestigacion radicados fuera de la Comunitat Valenciana (Convocatoria2023) under Grant CIBEST/2022/40. The associate editor coordinatingthe review of this article and approving it for publication was Prof.Xiaofeng Yuan. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Sensors Journal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sensors es_ES
dc.subject Air quality es_ES
dc.subject Sensor phenomena and characterization es_ES
dc.subject Gas detectors es_ES
dc.subject Feature extraction es_ES
dc.subject Monitoring es_ES
dc.subject Edge computing es_ES
dc.subject Air pollution es_ES
dc.subject Fog computing es_ES
dc.subject MQ sensor es_ES
dc.subject Rural area es_ES
dc.subject Urban area es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Wearable Low-Cost and Low-Energy Consumption Gas Sensor With Machine Learning to Recognize Outdoor Areas es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/JSEN.2024.3442874 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136779OB-C31/ES/EXPERIENCIAS LUDICAS CON AGENTES SOCIALES INTERACTIVOS Y ROBOTS (PLEISAR-INTER): ASPECTOS DE INTERACCION E INTERGENERACIONALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIBEST%2F2022%2F40/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Wang, J.; Parra, L.; Lacuesta, R.; Lloret, J.; Lorenz, P. (2024). Wearable Low-Cost and Low-Energy Consumption Gas Sensor With Machine Learning to Recognize Outdoor Areas. IEEE Sensors Journal. 24(19):30845-30852. https://doi.org/10.1109/JSEN.2024.3442874 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/JSEN.2024.3442874 es_ES
dc.description.upvformatpinicio 30845 es_ES
dc.description.upvformatpfin 30852 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 19 es_ES
dc.relation.pasarela S\534356 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem