Wang, J.; Parra, L.; Lacuesta, R.; Lloret, J.; Lorenz, P. (2024). Wearable Low-Cost and Low-Energy Consumption Gas Sensor With Machine Learning to Recognize Outdoor Areas. IEEE Sensors Journal. 24(19):30845-30852. https://doi.org/10.1109/JSEN.2024.3442874
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/212619
Título:
|
Wearable Low-Cost and Low-Energy Consumption Gas Sensor With Machine Learning to Recognize Outdoor Areas
|
Autor:
|
Wang, Jianchen
Parra, Lorena
Lacuesta, Raquel
Lloret, Jaime
Lorenz, Pascal
|
Entidad UPV:
|
Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
|
Fecha difusión:
|
|
Resumen:
|
[EN] Urban air quality, impacted by human-made pollution, impacts health and requires continuous monitoring. MQ sensors are the preferred air quality sensors despite their high energy consumption due to their cost, requiring ...[+]
[EN] Urban air quality, impacted by human-made pollution, impacts health and requires continuous monitoring. MQ sensors are the preferred air quality sensors despite their high energy consumption due to their cost, requiring the use machine learning to classify different types of air. The aim of this article is to evaluate a monitoring solution with low-cost and low-energy consumption to classify urban and rural air. A single MQ sensor will be used with a network with edge and fog computing to balance the energy consumption. Edge computing was included in the node for feature extraction, and fog computing was applied in the smartphone to classify the data using machine learning. Different sensors and time buffers are compared in order to find the adequate sensor for data generation and time buffer for feature extraction. The results indicate that it has been possible to achieve accuracies of 100% using a single sensor, the MQ2, with time buffers of 45-60 measures. With this proposal, it is possible to reduce the energy consumed by data gathering to 25% of the original consumption due to the use of a single sensor, due to the reduction in the sensors used in the previous prototype. Moreover, it has been possible to reduce the energy linked to data forwarding by almost 97% due to using a time buffer.
[-]
|
Palabras clave:
|
Sensors
,
Air quality
,
Sensor phenomena and characterization
,
Gas detectors
,
Feature extraction
,
Monitoring
,
Edge computing
,
Air pollution
,
Fog computing
,
MQ sensor
,
Rural area
,
Urban area
|
Derechos de uso:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
Fuente:
|
IEEE Sensors Journal. (issn:
1530-437X
)
|
DOI:
|
10.1109/JSEN.2024.3442874
|
Editorial:
|
Institute of Electrical and Electronics Engineers
|
Versión del editor:
|
https://doi.org/10.1109/JSEN.2024.3442874
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136779OB-C31/ES/EXPERIENCIAS LUDICAS CON AGENTES SOCIALES INTERACTIVOS Y ROBOTS (PLEISAR-INTER): ASPECTOS DE INTERACCION E INTERGENERACIONALES./
info:eu-repo/grantAgreement/GVA//CIBEST%2F2022%2F40/
|
Agradecimientos:
|
This work was supported in part by the Spanish Science and Innovation Ministry under Contract PID2022-136779OB-C31; and in part by Conselleria de Educacion, Universidades y Empleo through the Sub-venciones para estancias ...[+]
This work was supported in part by the Spanish Science and Innovation Ministry under Contract PID2022-136779OB-C31; and in part by Conselleria de Educacion, Universidades y Empleo through the Sub-venciones para estancias de personal investigador doctor en centros deinvestigacion radicados fuera de la Comunitat Valenciana (Convocatoria2023) under Grant CIBEST/2022/40. The associate editor coordinatingthe review of this article and approving it for publication was Prof.Xiaofeng Yuan.
[-]
|
Tipo:
|
Artículo
|