Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.
Mostrar el registro completo del ítem
Ferri-Borredà, P.; Lomonaco, V.; Passaro, LC.; Félix-De Castro, A.; Sánchez-Cuesta, P.; Sáez Silvestre, C.; Garcia-Gomez, JM. (2024). Deep continual learning for medical call incidents text classification under the presence of dataset shifts. Computers in Biology and Medicine. 175. https://doi.org/10.1016/j.compbiomed.2024.108548
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/214805
Título: | Deep continual learning for medical call incidents text classification under the presence of dataset shifts | |
Autor: | Lomonaco, Vincenzo Passaro, Lucia C. Félix-De Castro, Antonio Sánchez-Cuesta, Purificación | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] The aim of this work is to develop and evaluate a deep classifier that can effectively prioritize Emergency
Medical Call Incidents (EMCI) according to their life-threatening level under the presence of dataset shifts.
We ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.compbiomed.2024.108548 | |
Coste APC: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
This work has received support from the Ministry of Science, Innovation, and Universities of Spain through the FPU18/06441 program.
In addition, it has been partly funded by PNRR-M4C2-Investimento 1.3,
Partenariato Esteso ...[+]
|
|
Tipo: |
|