Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.
Mostrar el registro sencillo del ítem
dc.contributor.author | Ferri-Borredà, Pablo![]() |
es_ES |
dc.contributor.author | Lomonaco, Vincenzo![]() |
es_ES |
dc.contributor.author | Passaro, Lucia C.![]() |
es_ES |
dc.contributor.author | Félix-De Castro, Antonio![]() |
es_ES |
dc.contributor.author | Sánchez-Cuesta, Purificación![]() |
es_ES |
dc.contributor.author | Sáez Silvestre, Carlos![]() |
es_ES |
dc.contributor.author | Garcia-Gomez, Juan M.![]() |
es_ES |
dc.date.accessioned | 2025-02-25T19:08:12Z | |
dc.date.available | 2025-02-25T19:08:12Z | |
dc.date.issued | 2024-06 | es_ES |
dc.identifier.issn | 0010-4825 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/214805 | |
dc.description.abstract | [EN] The aim of this work is to develop and evaluate a deep classifier that can effectively prioritize Emergency Medical Call Incidents (EMCI) according to their life-threatening level under the presence of dataset shifts. We utilized a dataset consisting of 1 982 746 independent EMCI instances obtained from the Health Services Department of the Region of Valencia (Spain), with a time span from 2009 to 2019 (excluding 2013). The dataset includes free text dispatcher observations recorded during the call, as well as a binary variable indicating whether the event was life-threatening. To evaluate the presence of dataset shifts, we examined prior probability shifts, covariate shifts, and concept shifts. Subsequently, we designed and implemented four deep Continual Learning (CL) strategies¿cumulative learning, continual fine-tuning, experience replay, and synaptic intelligence¿alongside three deep CL baselines¿joint training, static approach, and single finetuning¿based on DistilBERT models. Our results demonstrated evidence of prior probability shifts, covariate shifts, and concept shifts in the data. Applying CL techniques had a statistically significant (¿ = 0.05) positive impact on both backward and forward knowledge transfer, as measured by the F1-score, compared to noncontinual approaches. We can argue that the utilization of CL techniques in the context of EMCI is effective in adapting deep learning classifiers to changes in data distributions, thereby maintaining the stability of model performance over time. To our knowledge, this study represents the first exploration of a CL approach using real EMCI data. | es_ES |
dc.description.sponsorship | This work has received support from the Ministry of Science, Innovation, and Universities of Spain through the FPU18/06441 program. In addition, it has been partly funded by PNRR-M4C2-Investimento 1.3, Partenariato Esteso PE00000013-FAIR-Future Artificial Intelligence Research-Spoke 1 Human-centered AI, funded by the European Commission under the NextGeneration EU programme. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers in Biology and Medicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Continual learning | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Dataset shifts | es_ES |
dc.subject | Emergency medical call incidents | es_ES |
dc.subject | Emergency medical dispatch | es_ES |
dc.subject | Natural language processing | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Deep continual learning for medical call incidents text classification under the presence of dataset shifts | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compbiomed.2024.108548 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//FPU18%2F06441/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Ferri-Borredà, P.; Lomonaco, V.; Passaro, LC.; Félix-De Castro, A.; Sánchez-Cuesta, P.; Sáez Silvestre, C.; Garcia-Gomez, JM. (2024). Deep continual learning for medical call incidents text classification under the presence of dataset shifts. Computers in Biology and Medicine. 175. https://doi.org/10.1016/j.compbiomed.2024.108548 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.compbiomed.2024.108548 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 175 | es_ES |
dc.identifier.pmid | 38718666 | es_ES |
dc.relation.pasarela | S\516486 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
upv.costeAPC | 2380 | es_ES |