- -

Deep continual learning for medical call incidents text classification under the presence of dataset shifts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.

Deep continual learning for medical call incidents text classification under the presence of dataset shifts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferri-Borredà, Pablo es_ES
dc.contributor.author Lomonaco, Vincenzo es_ES
dc.contributor.author Passaro, Lucia C. es_ES
dc.contributor.author Félix-De Castro, Antonio es_ES
dc.contributor.author Sánchez-Cuesta, Purificación es_ES
dc.contributor.author Sáez Silvestre, Carlos es_ES
dc.contributor.author Garcia-Gomez, Juan M. es_ES
dc.date.accessioned 2025-02-25T19:08:12Z
dc.date.available 2025-02-25T19:08:12Z
dc.date.issued 2024-06 es_ES
dc.identifier.issn 0010-4825 es_ES
dc.identifier.uri http://hdl.handle.net/10251/214805
dc.description.abstract [EN] The aim of this work is to develop and evaluate a deep classifier that can effectively prioritize Emergency Medical Call Incidents (EMCI) according to their life-threatening level under the presence of dataset shifts. We utilized a dataset consisting of 1 982 746 independent EMCI instances obtained from the Health Services Department of the Region of Valencia (Spain), with a time span from 2009 to 2019 (excluding 2013). The dataset includes free text dispatcher observations recorded during the call, as well as a binary variable indicating whether the event was life-threatening. To evaluate the presence of dataset shifts, we examined prior probability shifts, covariate shifts, and concept shifts. Subsequently, we designed and implemented four deep Continual Learning (CL) strategies¿cumulative learning, continual fine-tuning, experience replay, and synaptic intelligence¿alongside three deep CL baselines¿joint training, static approach, and single finetuning¿based on DistilBERT models. Our results demonstrated evidence of prior probability shifts, covariate shifts, and concept shifts in the data. Applying CL techniques had a statistically significant (¿ = 0.05) positive impact on both backward and forward knowledge transfer, as measured by the F1-score, compared to noncontinual approaches. We can argue that the utilization of CL techniques in the context of EMCI is effective in adapting deep learning classifiers to changes in data distributions, thereby maintaining the stability of model performance over time. To our knowledge, this study represents the first exploration of a CL approach using real EMCI data. es_ES
dc.description.sponsorship This work has received support from the Ministry of Science, Innovation, and Universities of Spain through the FPU18/06441 program. In addition, it has been partly funded by PNRR-M4C2-Investimento 1.3, Partenariato Esteso PE00000013-FAIR-Future Artificial Intelligence Research-Spoke 1 Human-centered AI, funded by the European Commission under the NextGeneration EU programme. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Continual learning es_ES
dc.subject Deep learning es_ES
dc.subject Dataset shifts es_ES
dc.subject Emergency medical call incidents es_ES
dc.subject Emergency medical dispatch es_ES
dc.subject Natural language processing es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Deep continual learning for medical call incidents text classification under the presence of dataset shifts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compbiomed.2024.108548 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//FPU18%2F06441/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Ferri-Borredà, P.; Lomonaco, V.; Passaro, LC.; Félix-De Castro, A.; Sánchez-Cuesta, P.; Sáez Silvestre, C.; Garcia-Gomez, JM. (2024). Deep continual learning for medical call incidents text classification under the presence of dataset shifts. Computers in Biology and Medicine. 175. https://doi.org/10.1016/j.compbiomed.2024.108548 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.compbiomed.2024.108548 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 175 es_ES
dc.identifier.pmid 38718666 es_ES
dc.relation.pasarela S\516486 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
upv.costeAPC 2380 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem