- -

SPR-based single nucleotide mismatch biosensor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SPR-based single nucleotide mismatch biosensor

Mostrar el registro completo del ítem

Milkani, E.; Khaing, A.; Morais Ezquerro, SB.; C.R. LAMBERT; W.G. MCGIMPSEY (2011). SPR-based single nucleotide mismatch biosensor. Analytical Methods. 3:122-132. https://doi.org/10.1039/c0ay00492h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/27814

Ficheros en el ítem

Metadatos del ítem

Título: SPR-based single nucleotide mismatch biosensor
Autor: Milkani, E. Khaing, A.M. Morais Ezquerro, Sergi Beñat C.R. LAMBERT W.G. MCGIMPSEY
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
The detection and characterization of the hybridization event of 21-base, unlabeled DNA oligonucleotides with a monolayer of complementary DNA immobilized on a gold surface, by electrochemical impedance spectroscopy and ...[+]
Palabras clave: Detection limits , DNA oligonucleotides , DNA strands , Gold surfaces , RNA hybridization , Single nucleotides , SPR sensors , SPR signals , Surface density , Biosensors , DNA , Electrochemical corrosion , Electrochemical impedance spectroscopy , Monolayers , Nucleic acids , Oligonucleotides , Probes , RNA , Surface plasmon resonance
Derechos de uso: Cerrado
Fuente:
Analytical Methods. (issn: 1759-9660 )
DOI: 10.1039/c0ay00492h
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c0ay00492h
Agradecimientos:
This project was partially supported by the US Army Medical Research and Materiel Command (USAMRMC) and the Telemedicine and Advanced Technology Research Center (TATRC) We note that ICx Nomadics (Stillwater, OK, USA) is ...[+]
Tipo: Artículo

References

HapMap, Nature, 2003, 426, 789796

R. A. King , J. I.Rotter and A. G.Motulsky, The Genetic Basis of Common Diseases, Oxford Univ. Press, Oxford, 1992, vol. 20

HapMap, Nature, 2005, 437, 12991320 [+]
HapMap, Nature, 2003, 426, 789796

R. A. King , J. I.Rotter and A. G.Motulsky, The Genetic Basis of Common Diseases, Oxford Univ. Press, Oxford, 1992, vol. 20

HapMap, Nature, 2005, 437, 12991320

The International HapMap Project, http://www.hapmap.org

The Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB), http://www.pharmgkb.org

Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., … Mello, C. C. (2001). Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Cell, 106(1), 23-34. doi:10.1016/s0092-8674(01)00431-7

Hwang, H.-W., & Mendell, J. T. (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer, 94(6), 776-780. doi:10.1038/sj.bjc.6603023

Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854. doi:10.1016/0092-8674(93)90529-y

Cissell, K. A., Shrestha, S., & Deo, S. K. (2007). MicroRNA Detection: Challenges for the Analytical Chemist. Analytical Chemistry, 79(13), 4754-4761. doi:10.1021/ac0719305

Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1-2), 3-15. doi:10.1016/s0925-4005(98)00321-9

Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3), 528-539. doi:10.1007/s00216-003-2101-0

Jin, W., Lin, X., Lv, S., Zhang, Y., Jin, Q., & Mu, Y. (2009). A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection. Biosensors and Bioelectronics, 24(5), 1266-1269. doi:10.1016/j.bios.2008.07.031

Ladd, J., Taylor, A. D., Piliarik, M., Homola, J., & Jiang, S. (2008). Hybrid Surface Platform for the Simultaneous Detection of Proteins and DNAs Using a Surface Plasmon Resonance Imaging Sensor. Analytical Chemistry, 80(11), 4231-4236. doi:10.1021/ac800263j

Nelson, B. P., Grimsrud, T. E., Liles, M. R., Goodman, R. M., & Corn, R. M. (2001). Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays. Analytical Chemistry, 73(1), 1-7. doi:10.1021/ac0010431

Schuck, P. (1997). USE OF SURFACE PLASMON RESONANCE TO PROBE THE EQUILIBRIUM AND DYNAMIC ASPECTS OF INTERACTIONS BETWEEN BIOLOGICAL MACROMOLECULES. Annual Review of Biophysics and Biomolecular Structure, 26(1), 541-566. doi:10.1146/annurev.biophys.26.1.541

Kai, E., Sawata, S., Ikebukuro, K., Iida, T., Honda, T., & Karube, I. (1999). Detection of PCR Products in Solution Using Surface Plasmon Resonance. Analytical Chemistry, 71(4), 796-800. doi:10.1021/ac9807161

Persson, B., Stenhag, K., Nilsson, P., Larsson, A., Uhlén, M., & Nygren, P.-Å. (1997). Analysis of Oligonucleotide Probe Affinities Using Surface Plasmon Resonance: A Means for Mutational Scanning. Analytical Biochemistry, 246(1), 34-44. doi:10.1006/abio.1996.9988

Yang, N., Su, X., Tjong, V., & Knoll, W. (2007). Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein–DNA binding. Biosensors and Bioelectronics, 22(11), 2700-2706. doi:10.1016/j.bios.2006.11.012

Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276

Vaisocherová, H., Zítová, A., Lachmanová, M., ??t??pánek, J., Králíková, ??árka, Liboska, R., … Homola, J. (2006). Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers, 82(4), 394-398. doi:10.1002/bip.20433

He, L., Musick, M. D., Nicewarner, S. R., Salinas, F. G., Benkovic, S. J., Natan, M. J., & Keating, C. D. (2000). Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. Journal of the American Chemical Society, 122(38), 9071-9077. doi:10.1021/ja001215b

Nabok, A., Tsargorodskaya, A., Davis, F., & Higson, S. P. J. (2007). The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosensors and Bioelectronics, 23(3), 377-383. doi:10.1016/j.bios.2007.04.020

Nabok, A., Tsargorodskaya, A., Gauthier, D., Davis, F., Higson, S. P. J., Berzina, T., … Fontana, M. P. (2009). Hybridization of Genomic DNA Adsorbed Electrostatically onto Cationic Surfaces. The Journal of Physical Chemistry B, 113(22), 7897-7902. doi:10.1021/jp9010636

Fritz, J. (2000). Translating Biomolecular Recognition into Nanomechanics. Science, 288(5464), 316-318. doi:10.1126/science.288.5464.316

Nakatani, K., Kobori, A., Kumasawa, H., & Saito, I. (2004). Highly sensitive detection of GG mismatched DNA by surfaces immobilized naphthyridine dimer through poly(ethylene oxide) linkers. Bioorganic & Medicinal Chemistry Letters, 14(5), 1105-1108. doi:10.1016/j.bmcl.2003.12.079

Hagihara, S. (2004). Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Research, 32(1), 278-286. doi:10.1093/nar/gkh171

Jiang, T., Minunni, M., Wilson, P., Zhang, J., Turner, A. P. F., & Mascini, M. (2005). Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor. Biosensors and Bioelectronics, 20(10), 1939-1945. doi:10.1016/j.bios.2004.08.040

Tawa, K. (2004). Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy. Nucleic Acids Research, 32(8), 2372-2377. doi:10.1093/nar/gkh572

Dell’Atti, D., Tombelli, S., Minunni, M., & Mascini, M. (2006). Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosensors and Bioelectronics, 21(10), 1876-1879. doi:10.1016/j.bios.2005.11.023

Milkani, E., Morais, S., Lambert, C. R., & McGimpsey, W. G. (2010). Detection of oligonucleotide systematic mismatches with a surface plasmon resonance sensor. Biosensors and Bioelectronics, 25(5), 1217-1220. doi:10.1016/j.bios.2009.09.010

Cai, H., Lee, T. M.-H., & Hsing, I.-M. (2006). Label-free protein recognition using an aptamer-based impedance measurement assay. Sensors and Actuators B: Chemical, 114(1), 433-437. doi:10.1016/j.snb.2005.06.017

Gong, P., Lee, C.-Y., Gamble, L. J., Castner, D. G., & Grainger, D. W. (2006). Hybridization Behavior of Mixed DNA/Alkylthiol Monolayers on Gold:  Characterization by Surface Plasmon Resonance and32P Radiometric Assay. Analytical Chemistry, 78(10), 3326-3334. doi:10.1021/ac052138b

Peterson, A. W. (2001). The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 29(24), 5163-5168. doi:10.1093/nar/29.24.5163

Wong, E. L. S., Mearns, F. J., & Gooding, J. J. (2005). Further development of an electrochemical DNA hybridization biosensor based on long-range electron transfer. Sensors and Actuators B: Chemical, 111-112, 515-521. doi:10.1016/j.snb.2005.03.072

Herne, T. M., & Tarlov, M. J. (1997). Characterization of DNA Probes Immobilized on Gold Surfaces. Journal of the American Chemical Society, 119(38), 8916-8920. doi:10.1021/ja9719586

Ito, T., Hosokawa, K., & Maeda, M. (2007). Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 22(8), 1816-1819. doi:10.1016/j.bios.2006.08.008

Randles, J. E. B. (1947). Kinetics of rapid electrode reactions. Discussions of the Faraday Society, 1, 11. doi:10.1039/df9470100011

Katz, E., & Willner, I. (2003). Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis, 15(11), 913-947. doi:10.1002/elan.200390114

J. R. Macdonald , Impedance Spectroscopy, Wiley/Interscience, New York, 1987

Bardea, A., Katz, E., & Willner, I. (2000). Probing Antigen-Antibody Interactions on Electrode Supports by the Biocatalyzed Precipitation of an Insoluble Product. Electroanalysis, 12(14), 1097-1106. doi:10.1002/1521-4109(200010)12:14<1097::aid-elan1097>3.0.co;2-x

Savitri, D., & Mitra, C. K. (1999). Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements. Bioelectrochemistry and Bioenergetics, 48(1), 163-169. doi:10.1016/s0302-4598(98)00227-x

Patolsky, F., Lichtenstein, A., & Willner, I. (2001). Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotechnology, 19(3), 253-257. doi:10.1038/85704

Long, Y.-T., Li, C.-Z., Sutherland, T. C., Kraatz, H.-B., & Lee, J. S. (2004). Electrochemical Detection of Single-Nucleotide Mismatches:  Application of M-DNA. Analytical Chemistry, 76(14), 4059-4065. doi:10.1021/ac049482d

Liu, J., Tian, S., Nielsen, P. E., & Knoll, W. (2005). In situ hybridization of PNA/DNA studied label-free by electrochemical impedance spectroscopy. Chemical Communications, (23), 2969. doi:10.1039/b419425j

Gautier, C., Cougnon, C., Pilard, J.-F., Casse, N., Chénais, B., & Laulier, M. (2007). Detection and modelling of DNA hybridization by EIS measurements. Biosensors and Bioelectronics, 22(9-10), 2025-2031. doi:10.1016/j.bios.2006.08.040

Li, A., Yang, F., Ma, Y., & Yang, X. (2007). Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosensors and Bioelectronics, 22(8), 1716-1722. doi:10.1016/j.bios.2006.07.033

A. Paproth , K.-J.Wolter, T.Herzog and T.Zerna, 24th International Spring Seminar on Electronics Technology, Calimanesti-Caciulata, Romania, May 5–9, 2001

Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. (2005). Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 105(4), 1103-1170. doi:10.1021/cr0300789

Erickson, D., Li, D., & Krull, U. J. (2003). Modeling of DNA hybridization kinetics for spatially resolved biochips. Analytical Biochemistry, 317(2), 186-200. doi:10.1016/s0003-2697(03)00090-3

Lenigk, R., Liu, R. H., Athavale, M., Chen, Z., Ganser, D., Yang, J., … Grodzinski, P. (2002). Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays. Analytical Biochemistry, 311(1), 40-49. doi:10.1016/s0003-2697(02)00391-3

Noerholm, M., Bruus, H., Jakobsen, M. H., Telleman, P., & Ramsing, N. B. (2004). Polymer microfluidic chip for online monitoring of microarray hybridizations. Lab on a Chip, 4(1), 28. doi:10.1039/b311991b

Yuen, P. K., Li, G., Bao, Y., & Müller, U. R. (2003). Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Lab Chip, 3(1), 46-50. doi:10.1039/b210274a

Okahata, Y., Kawase, M., Niikura, K., Ohtake, F., Furusawa, H., & Ebara, Y. (1998). Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance. Analytical Chemistry, 70(7), 1288-1296. doi:10.1021/ac970584w

V. A. Bloomfield , D. M.Crothers and I.Tinoco, Nucleic Acids—Structures, Properties, and Functions, University Science Books, Sausalito, CA, 2000

Thiel, A. J., Frutos, A. G., Jordan, C. E., Corn, R. M., & Smith, L. M. (1997). In Situ Surface Plasmon Resonance Imaging Detection of DNA Hybridization to Oligonucleotide Arrays on Gold Surfaces. Analytical Chemistry, 69(24), 4948-4956. doi:10.1021/ac9708001

Fiche, J. B., Buhot, A., Calemczuk, R., & Livache, T. (2007). Temperature Effects on DNA Chip Experiments from Surface Plasmon Resonance Imaging: Isotherms and Melting Curves. Biophysical Journal, 92(3), 935-946. doi:10.1529/biophysj.106.097790

Levicky, R., & Horgan, A. (2005). Physicochemical perspectives on DNA microarray and biosensor technologies. Trends in Biotechnology, 23(3), 143-149. doi:10.1016/j.tibtech.2005.01.004

Harris, D. C. (1998). Nonlinear Least-Squares Curve Fitting with Microsoft Excel Solver. Journal of Chemical Education, 75(1), 119. doi:10.1021/ed075p119

Linman, M. J., Taylor, J. D., Yu, H., Chen, X., & Cheng, Q. (2008). Surface Plasmon Resonance Study of Protein−Carbohydrate Interactions Using Biotinylated Sialosides. Analytical Chemistry, 80(11), 4007-4013. doi:10.1021/ac702566e

Stenberg, E., Persson, B., Roos, H., & Urbaniczky, C. (1991). Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. Journal of Colloid and Interface Science, 143(2), 513-526. doi:10.1016/0021-9797(91)90284-f

Vainrub, A., & Pettitt, B. M. (2002). Coulomb blockage of hybridization in two-dimensional DNA arrays. Physical Review E, 66(4). doi:10.1103/physreve.66.041905

Vainrub, A., & Pettitt, B. M. (2003). Sensitive Quantitative Nucleic Acid Detection Using Oligonucleotide Microarrays. Journal of the American Chemical Society, 125(26), 7798-7799. doi:10.1021/ja035020q

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem