- -

SPR-based single nucleotide mismatch biosensor

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

SPR-based single nucleotide mismatch biosensor

Show simple item record

Files in this item

dc.contributor.author Milkani, E. es_ES
dc.contributor.author Khaing, A.M. es_ES
dc.contributor.author Morais Ezquerro, Sergi Beñat es_ES
dc.contributor.author C.R. LAMBERT es_ES
dc.contributor.author W.G. MCGIMPSEY es_ES
dc.date.accessioned 2013-04-15T08:48:54Z
dc.date.available 2013-04-15T08:48:54Z
dc.date.issued 2011
dc.identifier.issn 1759-9660
dc.identifier.uri http://hdl.handle.net/10251/27814
dc.description.abstract The detection and characterization of the hybridization event of 21-base, unlabeled DNA oligonucleotides with a monolayer of complementary DNA immobilized on a gold surface, by electrochemical impedance spectroscopy and surface plasmon resonance (SPR) is presented. A thiol modification on the probe DNA strand allowed for its attachment to the surface via self-assembly. For the hybridization of full match target DNA a detection limit of 20 pM was determined. RNA hybridization was also detectable with the same sensor, with a similar detection limit. The SPR signal generated upon hybridization of the full match was always distinguishable from the single mismatch target DNA oligonucleotides when the mismatch was in the middle or at the proximal end of the target DNA sequence. However, the response of the sensor was identical for the hybridization of the full match and the distal end mismatch. The SPR sensor described is reusable over at least 20 hybridization/regeneration cycles and is insensitive to flow rate (20-800 L min -1) or temperature (20-60°C). Based on the SPR response, the surface density of the probe was estimated to be at least 4.3 ¿ 10 12 molecules per cm 2. © 2011 The Royal Society of Chemistry. es_ES
dc.description.sponsorship This project was partially supported by the US Army Medical Research and Materiel Command (USAMRMC) and the Telemedicine and Advanced Technology Research Center (TATRC) We note that ICx Nomadics (Stillwater, OK, USA) is now ICx Technologies (Arlington, VA, USA). en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry
dc.relation.ispartof Analytical Methods es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Detection limits es_ES
dc.subject DNA oligonucleotides es_ES
dc.subject DNA strands es_ES
dc.subject Gold surfaces es_ES
dc.subject RNA hybridization es_ES
dc.subject Single nucleotides es_ES
dc.subject SPR sensors es_ES
dc.subject SPR signals es_ES
dc.subject Surface density es_ES
dc.subject Biosensors es_ES
dc.subject DNA es_ES
dc.subject Electrochemical corrosion es_ES
dc.subject Electrochemical impedance spectroscopy es_ES
dc.subject Monolayers es_ES
dc.subject Nucleic acids es_ES
dc.subject Oligonucleotides es_ES
dc.subject Probes es_ES
dc.subject RNA es_ES
dc.subject Surface plasmon resonance es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title SPR-based single nucleotide mismatch biosensor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c0ay00492h
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Milkani, E.; Khaing, A.; Morais Ezquerro, SB.; C.R. LAMBERT; W.G. MCGIMPSEY (2011). SPR-based single nucleotide mismatch biosensor. Analytical Methods. 3:122-132. https://doi.org/10.1039/c0ay00492h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c0ay00492h es_ES
dc.description.upvformatpinicio 122 es_ES
dc.description.upvformatpfin 132 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.relation.senia 215063
dc.contributor.funder Medical Research and Materiel Command
dc.contributor.funder Telemedicine and Advanced Technology Research Center, EE.UU.
dc.description.references HapMap, Nature, 2003, 426, 789796 es_ES
dc.description.references R. A. King , J. I.Rotter and A. G.Motulsky, The Genetic Basis of Common Diseases, Oxford Univ. Press, Oxford, 1992, vol. 20 es_ES
dc.description.references HapMap, Nature, 2005, 437, 12991320 es_ES
dc.description.references The International HapMap Project, http://www.hapmap.org es_ES
dc.description.references The Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB), http://www.pharmgkb.org es_ES
dc.description.references Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., … Mello, C. C. (2001). Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Cell, 106(1), 23-34. doi:10.1016/s0092-8674(01)00431-7 es_ES
dc.description.references Hwang, H.-W., & Mendell, J. T. (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer, 94(6), 776-780. doi:10.1038/sj.bjc.6603023 es_ES
dc.description.references Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854. doi:10.1016/0092-8674(93)90529-y es_ES
dc.description.references Cissell, K. A., Shrestha, S., & Deo, S. K. (2007). MicroRNA Detection: Challenges for the Analytical Chemist. Analytical Chemistry, 79(13), 4754-4761. doi:10.1021/ac0719305 es_ES
dc.description.references Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1-2), 3-15. doi:10.1016/s0925-4005(98)00321-9 es_ES
dc.description.references Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3), 528-539. doi:10.1007/s00216-003-2101-0 es_ES
dc.description.references Jin, W., Lin, X., Lv, S., Zhang, Y., Jin, Q., & Mu, Y. (2009). A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection. Biosensors and Bioelectronics, 24(5), 1266-1269. doi:10.1016/j.bios.2008.07.031 es_ES
dc.description.references Ladd, J., Taylor, A. D., Piliarik, M., Homola, J., & Jiang, S. (2008). Hybrid Surface Platform for the Simultaneous Detection of Proteins and DNAs Using a Surface Plasmon Resonance Imaging Sensor. Analytical Chemistry, 80(11), 4231-4236. doi:10.1021/ac800263j es_ES
dc.description.references Nelson, B. P., Grimsrud, T. E., Liles, M. R., Goodman, R. M., & Corn, R. M. (2001). Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays. Analytical Chemistry, 73(1), 1-7. doi:10.1021/ac0010431 es_ES
dc.description.references Schuck, P. (1997). USE OF SURFACE PLASMON RESONANCE TO PROBE THE EQUILIBRIUM AND DYNAMIC ASPECTS OF INTERACTIONS BETWEEN BIOLOGICAL MACROMOLECULES. Annual Review of Biophysics and Biomolecular Structure, 26(1), 541-566. doi:10.1146/annurev.biophys.26.1.541 es_ES
dc.description.references Kai, E., Sawata, S., Ikebukuro, K., Iida, T., Honda, T., & Karube, I. (1999). Detection of PCR Products in Solution Using Surface Plasmon Resonance. Analytical Chemistry, 71(4), 796-800. doi:10.1021/ac9807161 es_ES
dc.description.references Persson, B., Stenhag, K., Nilsson, P., Larsson, A., Uhlén, M., & Nygren, P.-Å. (1997). Analysis of Oligonucleotide Probe Affinities Using Surface Plasmon Resonance: A Means for Mutational Scanning. Analytical Biochemistry, 246(1), 34-44. doi:10.1006/abio.1996.9988 es_ES
dc.description.references Yang, N., Su, X., Tjong, V., & Knoll, W. (2007). Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein–DNA binding. Biosensors and Bioelectronics, 22(11), 2700-2706. doi:10.1016/j.bios.2006.11.012 es_ES
dc.description.references Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276 es_ES
dc.description.references Vaisocherová, H., Zítová, A., Lachmanová, M., ??t??pánek, J., Králíková, ??árka, Liboska, R., … Homola, J. (2006). Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers, 82(4), 394-398. doi:10.1002/bip.20433 es_ES
dc.description.references He, L., Musick, M. D., Nicewarner, S. R., Salinas, F. G., Benkovic, S. J., Natan, M. J., & Keating, C. D. (2000). Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. Journal of the American Chemical Society, 122(38), 9071-9077. doi:10.1021/ja001215b es_ES
dc.description.references Nabok, A., Tsargorodskaya, A., Davis, F., & Higson, S. P. J. (2007). The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosensors and Bioelectronics, 23(3), 377-383. doi:10.1016/j.bios.2007.04.020 es_ES
dc.description.references Nabok, A., Tsargorodskaya, A., Gauthier, D., Davis, F., Higson, S. P. J., Berzina, T., … Fontana, M. P. (2009). Hybridization of Genomic DNA Adsorbed Electrostatically onto Cationic Surfaces. The Journal of Physical Chemistry B, 113(22), 7897-7902. doi:10.1021/jp9010636 es_ES
dc.description.references Fritz, J. (2000). Translating Biomolecular Recognition into Nanomechanics. Science, 288(5464), 316-318. doi:10.1126/science.288.5464.316 es_ES
dc.description.references Nakatani, K., Kobori, A., Kumasawa, H., & Saito, I. (2004). Highly sensitive detection of GG mismatched DNA by surfaces immobilized naphthyridine dimer through poly(ethylene oxide) linkers. Bioorganic & Medicinal Chemistry Letters, 14(5), 1105-1108. doi:10.1016/j.bmcl.2003.12.079 es_ES
dc.description.references Hagihara, S. (2004). Detection of guanine-adenine mismatches by surface plasmon resonance sensor carrying naphthyridine-azaquinolone hybrid on the surface. Nucleic Acids Research, 32(1), 278-286. doi:10.1093/nar/gkh171 es_ES
dc.description.references Jiang, T., Minunni, M., Wilson, P., Zhang, J., Turner, A. P. F., & Mascini, M. (2005). Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor. Biosensors and Bioelectronics, 20(10), 1939-1945. doi:10.1016/j.bios.2004.08.040 es_ES
dc.description.references Tawa, K. (2004). Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy. Nucleic Acids Research, 32(8), 2372-2377. doi:10.1093/nar/gkh572 es_ES
dc.description.references Dell’Atti, D., Tombelli, S., Minunni, M., & Mascini, M. (2006). Detection of clinically relevant point mutations by a novel piezoelectric biosensor. Biosensors and Bioelectronics, 21(10), 1876-1879. doi:10.1016/j.bios.2005.11.023 es_ES
dc.description.references Milkani, E., Morais, S., Lambert, C. R., & McGimpsey, W. G. (2010). Detection of oligonucleotide systematic mismatches with a surface plasmon resonance sensor. Biosensors and Bioelectronics, 25(5), 1217-1220. doi:10.1016/j.bios.2009.09.010 es_ES
dc.description.references Cai, H., Lee, T. M.-H., & Hsing, I.-M. (2006). Label-free protein recognition using an aptamer-based impedance measurement assay. Sensors and Actuators B: Chemical, 114(1), 433-437. doi:10.1016/j.snb.2005.06.017 es_ES
dc.description.references Gong, P., Lee, C.-Y., Gamble, L. J., Castner, D. G., & Grainger, D. W. (2006). Hybridization Behavior of Mixed DNA/Alkylthiol Monolayers on Gold:  Characterization by Surface Plasmon Resonance and32P Radiometric Assay. Analytical Chemistry, 78(10), 3326-3334. doi:10.1021/ac052138b es_ES
dc.description.references Peterson, A. W. (2001). The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 29(24), 5163-5168. doi:10.1093/nar/29.24.5163 es_ES
dc.description.references Wong, E. L. S., Mearns, F. J., & Gooding, J. J. (2005). Further development of an electrochemical DNA hybridization biosensor based on long-range electron transfer. Sensors and Actuators B: Chemical, 111-112, 515-521. doi:10.1016/j.snb.2005.03.072 es_ES
dc.description.references Herne, T. M., & Tarlov, M. J. (1997). Characterization of DNA Probes Immobilized on Gold Surfaces. Journal of the American Chemical Society, 119(38), 8916-8920. doi:10.1021/ja9719586 es_ES
dc.description.references Ito, T., Hosokawa, K., & Maeda, M. (2007). Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 22(8), 1816-1819. doi:10.1016/j.bios.2006.08.008 es_ES
dc.description.references Randles, J. E. B. (1947). Kinetics of rapid electrode reactions. Discussions of the Faraday Society, 1, 11. doi:10.1039/df9470100011 es_ES
dc.description.references Katz, E., & Willner, I. (2003). Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis, 15(11), 913-947. doi:10.1002/elan.200390114 es_ES
dc.description.references J. R. Macdonald , Impedance Spectroscopy, Wiley/Interscience, New York, 1987 es_ES
dc.description.references Bardea, A., Katz, E., & Willner, I. (2000). Probing Antigen-Antibody Interactions on Electrode Supports by the Biocatalyzed Precipitation of an Insoluble Product. Electroanalysis, 12(14), 1097-1106. doi:10.1002/1521-4109(200010)12:14<1097::aid-elan1097>3.0.co;2-x es_ES
dc.description.references Savitri, D., & Mitra, C. K. (1999). Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements. Bioelectrochemistry and Bioenergetics, 48(1), 163-169. doi:10.1016/s0302-4598(98)00227-x es_ES
dc.description.references Patolsky, F., Lichtenstein, A., & Willner, I. (2001). Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature Biotechnology, 19(3), 253-257. doi:10.1038/85704 es_ES
dc.description.references Long, Y.-T., Li, C.-Z., Sutherland, T. C., Kraatz, H.-B., & Lee, J. S. (2004). Electrochemical Detection of Single-Nucleotide Mismatches:  Application of M-DNA. Analytical Chemistry, 76(14), 4059-4065. doi:10.1021/ac049482d es_ES
dc.description.references Liu, J., Tian, S., Nielsen, P. E., & Knoll, W. (2005). In situ hybridization of PNA/DNA studied label-free by electrochemical impedance spectroscopy. Chemical Communications, (23), 2969. doi:10.1039/b419425j es_ES
dc.description.references Gautier, C., Cougnon, C., Pilard, J.-F., Casse, N., Chénais, B., & Laulier, M. (2007). Detection and modelling of DNA hybridization by EIS measurements. Biosensors and Bioelectronics, 22(9-10), 2025-2031. doi:10.1016/j.bios.2006.08.040 es_ES
dc.description.references Li, A., Yang, F., Ma, Y., & Yang, X. (2007). Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosensors and Bioelectronics, 22(8), 1716-1722. doi:10.1016/j.bios.2006.07.033 es_ES
dc.description.references A. Paproth , K.-J.Wolter, T.Herzog and T.Zerna, 24th International Spring Seminar on Electronics Technology, Calimanesti-Caciulata, Romania, May 5–9, 2001 es_ES
dc.description.references Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. (2005). Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 105(4), 1103-1170. doi:10.1021/cr0300789 es_ES
dc.description.references Erickson, D., Li, D., & Krull, U. J. (2003). Modeling of DNA hybridization kinetics for spatially resolved biochips. Analytical Biochemistry, 317(2), 186-200. doi:10.1016/s0003-2697(03)00090-3 es_ES
dc.description.references Lenigk, R., Liu, R. H., Athavale, M., Chen, Z., Ganser, D., Yang, J., … Grodzinski, P. (2002). Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays. Analytical Biochemistry, 311(1), 40-49. doi:10.1016/s0003-2697(02)00391-3 es_ES
dc.description.references Noerholm, M., Bruus, H., Jakobsen, M. H., Telleman, P., & Ramsing, N. B. (2004). Polymer microfluidic chip for online monitoring of microarray hybridizations. Lab on a Chip, 4(1), 28. doi:10.1039/b311991b es_ES
dc.description.references Yuen, P. K., Li, G., Bao, Y., & Müller, U. R. (2003). Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Lab Chip, 3(1), 46-50. doi:10.1039/b210274a es_ES
dc.description.references Okahata, Y., Kawase, M., Niikura, K., Ohtake, F., Furusawa, H., & Ebara, Y. (1998). Kinetic Measurements of DNA Hybridization on an Oligonucleotide-Immobilized 27-MHz Quartz Crystal Microbalance. Analytical Chemistry, 70(7), 1288-1296. doi:10.1021/ac970584w es_ES
dc.description.references V. A. Bloomfield , D. M.Crothers and I.Tinoco, Nucleic Acids—Structures, Properties, and Functions, University Science Books, Sausalito, CA, 2000 es_ES
dc.description.references Thiel, A. J., Frutos, A. G., Jordan, C. E., Corn, R. M., & Smith, L. M. (1997). In Situ Surface Plasmon Resonance Imaging Detection of DNA Hybridization to Oligonucleotide Arrays on Gold Surfaces. Analytical Chemistry, 69(24), 4948-4956. doi:10.1021/ac9708001 es_ES
dc.description.references Fiche, J. B., Buhot, A., Calemczuk, R., & Livache, T. (2007). Temperature Effects on DNA Chip Experiments from Surface Plasmon Resonance Imaging: Isotherms and Melting Curves. Biophysical Journal, 92(3), 935-946. doi:10.1529/biophysj.106.097790 es_ES
dc.description.references Levicky, R., & Horgan, A. (2005). Physicochemical perspectives on DNA microarray and biosensor technologies. Trends in Biotechnology, 23(3), 143-149. doi:10.1016/j.tibtech.2005.01.004 es_ES
dc.description.references Harris, D. C. (1998). Nonlinear Least-Squares Curve Fitting with Microsoft Excel Solver. Journal of Chemical Education, 75(1), 119. doi:10.1021/ed075p119 es_ES
dc.description.references Linman, M. J., Taylor, J. D., Yu, H., Chen, X., & Cheng, Q. (2008). Surface Plasmon Resonance Study of Protein−Carbohydrate Interactions Using Biotinylated Sialosides. Analytical Chemistry, 80(11), 4007-4013. doi:10.1021/ac702566e es_ES
dc.description.references Stenberg, E., Persson, B., Roos, H., & Urbaniczky, C. (1991). Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. Journal of Colloid and Interface Science, 143(2), 513-526. doi:10.1016/0021-9797(91)90284-f es_ES
dc.description.references Vainrub, A., & Pettitt, B. M. (2002). Coulomb blockage of hybridization in two-dimensional DNA arrays. Physical Review E, 66(4). doi:10.1103/physreve.66.041905 es_ES
dc.description.references Vainrub, A., & Pettitt, B. M. (2003). Sensitive Quantitative Nucleic Acid Detection Using Oligonucleotide Microarrays. Journal of the American Chemical Society, 125(26), 7798-7799. doi:10.1021/ja035020q es_ES


This item appears in the following Collection(s)

Show simple item record