- -

Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses

Mostrar el registro completo del ítem

Rodríguez Fortuño, FJ.; Martínez Marco, ML.; Tomás Navarro, B.; Ortuño Molinero, R.; Martí Sendra, J.; Martínez Abietar, AJ.; Rodríguez Cantó, PJ. (2011). Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses. Applied Physics Letters. 98:133118-133118. https://doi.org/10.1063/1.3558916

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/27840

Ficheros en el ítem

Metadatos del ítem

Título: Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses
Autor: Rodríguez Fortuño, Francisco José Martínez Marco, Mª Luz Tomás Navarro, Begoña Ortuño Molinero, Rubén Martí Sendra, Javier Martínez Abietar, Alejandro José Rodríguez Cantó, Pedro Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
In this work, we report the design, fabrication, and characterization of gold nanocrosses for chemosensing purposes. The nanocrosses are designed to exhibit a localized surface plasmon resonance which is very sensitive to ...[+]
Palabras clave: At-wavelength , Chemosensing , Functionalizations , Localized surface plasmon resonance , Plasmonic , Refractive index changes , Refractive index units , Sensitivity values , Chemical detection , Gold , Light refraction , Monolayers , Plasmons , Refractive index , Refractometers , Surface plasmon resonance
Derechos de uso: Cerrado
Fuente:
Applied Physics Letters. (issn: 0003-6951 )
DOI: 10.1063/1.3558916
Editorial:
American Institute of Physics
Versión del editor: http://dx.doi.org/10.1063/1.3558916
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
info:eu-repo/grantAgreement/MICINN//TEC2008-06871-C02-02/ES/METAMATERIALES PARA APLICACIONES EN EL REGIMEN DE TERAHERCIOS/
Descripción: Copyright (2011) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Agradecimientos:
Financial support by the Spanish MICINN under contracts CONSOLIDER EMET CSD2008-00066 and TEC2008-06871-C02-02 is gratefully acknowledged.
Tipo: Artículo

References

Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3), 528-539. doi:10.1007/s00216-003-2101-0

Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured Plasmonic Sensors. Chemical Reviews, 108(2), 494-521. doi:10.1021/cr068126n

Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607 [+]
Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 377(3), 528-539. doi:10.1007/s00216-003-2101-0

Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured Plasmonic Sensors. Chemical Reviews, 108(2), 494-521. doi:10.1021/cr068126n

Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607

Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi:10.1038/nmat2162

Zhao, J., Zhang, X., Yonzon, C. R., Haes, A. J., & Van Duyne, R. P. (2006). Localized surface plasmon resonance biosensors. Nanomedicine, 1(2), 219-228. doi:10.2217/17435889.1.2.219

SHANKARAN, D., GOBI, K., & MIURA, N. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121(1), 158-177. doi:10.1016/j.snb.2006.09.014

Lee, K.-S., & El-Sayed, M. A. (2006). Gold and Silver Nanoparticles in Sensing and Imaging:  Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. The Journal of Physical Chemistry B, 110(39), 19220-19225. doi:10.1021/jp062536y

Miura, N., Ogata, K., Sakai, G., Uda, T., & Yamazoe, N. (1997). Detection of Morphine in ppb Range by Using SPR (Surface- Plasmon-Resonance) Immunosensor. Chemistry Letters, 26(8), 713-714. doi:10.1246/cl.1997.713

Shankaran, D. R., Matsumoto, K., Toko, K., & Miura, N. (2006). Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sensors and Actuators B: Chemical, 114(1), 71-79. doi:10.1016/j.snb.2005.04.013

Cosnier, S. (1999). Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics, 14(5), 443-456. doi:10.1016/s0956-5663(99)00024-x

Lee, J. W., Sim, S. J., Cho, S. M., & Lee, J. (2005). Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics, 20(7), 1422-1427. doi:10.1016/j.bios.2004.04.017

Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276

Kato, K., Dooling, C. M., Shinbo, K., Richardson, T. H., Kaneko, F., Tregonning, R., … Hunter, C. A. (2002). Surface plasmon resonance properties and gas response in porphyrin Langmuir–Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198-200, 811-816. doi:10.1016/s0927-7757(01)01006-8

Senaratne, W., Andruzzi, L., & Ober, C. K. (2005). Self-Assembled Monolayers and Polymer Brushes in Biotechnology:  Current Applications and Future Perspectives. Biomacromolecules, 6(5), 2427-2448. doi:10.1021/bm050180a

McFarland, A. D., & Van Duyne, R. P. (2003). Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. Nano Letters, 3(8), 1057-1062. doi:10.1021/nl034372s

Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 107(3), 668-677. doi:10.1021/jp026731y

Brolo, A. G., Gordon, R., Leathem, B., & Kavanagh, K. L. (2004). Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir, 20(12), 4813-4815. doi:10.1021/la0493621

Ramanathan, T., Fisher, F. T., Ruoff, R. S., & Brinson, L. C. (2005). Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems. Chemistry of Materials, 17(6), 1290-1295. doi:10.1021/cm048357f

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem