- -

On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mollá Romano, Sergio es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.contributor.author Lafuente, S.L. es_ES
dc.contributor.author Prats, Joan es_ES
dc.date.accessioned 2013-04-19T12:01:17Z
dc.date.issued 2011-10-05
dc.identifier.issn 1615-6846
dc.identifier.uri http://hdl.handle.net/10251/28080
dc.description.abstract [EN] Methanol crossover through polymer electrolyte membranes is a critical issue and causes an important reduction of per- formance in direct methanol fuel cells (DMFCs). Measuring the evolution of CO 2 gas in the cathode is a common method to determine the methanol crossover under real operating conditions, although an easier and simpler method is prefer- able for the screening of membranes during their step of development. In this sense, this work has been focused on the ex situ characterization of the methanol permeability in novel nanofiber-reinforced composite Nafion/PVA mem- branes for DMFC application by means of three different experimental procedures: (a) potentiometric method, (b) gas chromatography technique, and (c) measuring the density. It was found that all these methods resulted in comparable results and it was observed that the incorporation of the PVA nanofiber phase within the Nafion ¿ matrix causes a remarkable reduction of the methanol permeability. The optimal choice of the most suitable technique depends on the accuracy expected for the methanol concentration, the availability of the required instrumental, and the complexity of the procedure. es_ES
dc.description.sponsorship This work has been supported by the Valencian Institute of Small and Medium-Sized Enterprises (IMPIVA) and the European Regional Development Funds, through the project IMIDIC/2010/13. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag en_EN
dc.relation.ispartof Fuel Cells es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject DMFC es_ES
dc.subject Nanocomposite mafion membranes es_ES
dc.subject Methanol permeability es_ES
dc.subject Nanofibers es_ES
dc.subject PVA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/fuce.201100004
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IMIDIC%2F2010%2F013/ES/DESENVOLUPAMENT DE MATERIALS I COMPONENTS PER A PILES DE COMBUSTIBLE DE MEMBRANES D’INTERCANVI PROTÒNIC (PEMFC) I DE METANOL DIRECTE (DMFC)/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Mollá Romano, S.; Compañ Moreno, V.; Lafuente, S.; Prats, J. (2011). On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies. Fuel Cells. 11(6):897-906. https://doi.org/10.1002/fuce.201100004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/fuce.201100004/pdf es_ES
dc.description.upvformatpinicio 897 es_ES
dc.description.upvformatpfin 906 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 193905
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de la Pequeña y Mediana Industria de la Generalitat Valenciana es_ES
dc.description.references Handbook of Fuel Cells-Fundamentals, Technology and Applications Vol. 3 2003 es_ES
dc.description.references Neergat, M., Leveratto, D., & Stimming, U. (2002). Catalysts for Direct Methanol Fuel Cells. Fuel Cells, 2(1), 25-30. doi:10.1002/1615-6854(20020815)2:1<25::aid-fuce25>3.0.co;2-4 es_ES
dc.description.references Mauritz, K. A., Mountz, D. A., Reuschle, D. A., & Blackwell, R. I. (2004). Self-assembled organic/inorganic hybrids as membrane materials. Electrochimica Acta, 50(2-3), 565-569. doi:10.1016/j.electacta.2003.09.051 es_ES
dc.description.references Deng, Q., Hu, Y., Moore, R. B., McCormick, C. L., & Mauritz, K. A. (1997). Nafion/ORMOSIL Hybrids viain SituSol−Gel Reactions. 3. Pyrene Fluorescence Probe Investigations of Nanoscale Environment. Chemistry of Materials, 9(1), 36-44. doi:10.1021/cm950552u es_ES
dc.description.references Kim, Y.-M., Park, K.-W., Choi, J.-H., Park, I.-S., & Sung, Y.-E. (2003). A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochemistry Communications, 5(7), 571-574. doi:10.1016/s1388-2481(03)00130-9 es_ES
dc.description.references Smit, M. A., Ocampo, A. L., Espinosa-Medina, M. A., & Sebastián, P. J. (2003). A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. Journal of Power Sources, 124(1), 59-64. doi:10.1016/s0378-7753(03)00730-4 es_ES
dc.description.references Chen, C.-Y., Garnica-Rodriguez, J. I., Duke, M. C., Costa, R. F. D., Dicks, A. L., & da Costa, J. C. D. (2007). Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. Journal of Power Sources, 166(2), 324-330. doi:10.1016/j.jpowsour.2006.12.102 es_ES
dc.description.references Fernández-Carretero, F. J., Compañ, V., & Riande, E. (2007). Hybrid ion-exchange membranes for fuel cells and separation processes. Journal of Power Sources, 173(1), 68-76. doi:10.1016/j.jpowsour.2007.07.011 es_ES
dc.description.references DELUCA, N., & ELABD, Y. (2006). Nafion®/poly(vinyl alcohol) blends: Effect of composition and annealing temperature on transport properties. Journal of Membrane Science, 282(1-2), 217-224. doi:10.1016/j.memsci.2006.05.025 es_ES
dc.description.references Mollá, S., & Compañ, V. (2011). Performance of composite Nafion/PVA membranes for direct methanol fuel cells. Journal of Power Sources, 196(5), 2699-2708. doi:10.1016/j.jpowsour.2010.11.022 es_ES
dc.description.references Kreuer, K.-D. (1996). Proton Conductivity:  Materials and Applications. Chemistry of Materials, 8(3), 610-641. doi:10.1021/cm950192a es_ES
dc.description.references Snyder, J. (2002). Polymer electrolytes and polyelectrolytes: Monte Carlo simulations of thermal effects on conduction. Solid State Ionics, 147(3-4), 249-257. doi:10.1016/s0167-2738(02)00025-5 es_ES
dc.description.references Paddison, S. J. (2003). Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes. Annual Review of Materials Research, 33(1), 289-319. doi:10.1146/annurev.matsci.33.022702.155102 es_ES
dc.description.references Proton Conducting Membrane Fuel Cells 1995 es_ES
dc.description.references Jiang, R., & Chu, D. (2002). CO[sub 2] Crossover Through a Nafion Membrane in a Direct Methanol Fuel Cell. Electrochemical and Solid-State Letters, 5(7), A156. doi:10.1149/1.1480136 es_ES
dc.description.references Qi, Z., & Kaufman, A. (2002). Open circuit voltage and methanol crossover in DMFCs. Journal of Power Sources, 110(1), 177-185. doi:10.1016/s0378-7753(02)00268-9 es_ES
dc.description.references Eccarius, S., Garcia, B. L., Hebling, C., & Weidner, J. W. (2008). Experimental validation of a methanol crossover model in DMFC applications. Journal of Power Sources, 179(2), 723-733. doi:10.1016/j.jpowsour.2007.11.102 es_ES
dc.description.references Tamaki, T., Yamauchi, A., Ito, T., Ohashi, H., & Yamaguchi, T. (2011). The Effect of Methanol Crossover on the Cathode Overpotential of DMFCs. Fuel Cells, 11(3), 394-403. doi:10.1002/fuce.201000141 es_ES
dc.description.references Pivovar, B. S., Wang, Y., & Cussler, E. L. (1999). Pervaporation membranes in direct methanol fuel cells. Journal of Membrane Science, 154(2), 155-162. doi:10.1016/s0376-7388(98)00264-6 es_ES
dc.description.references Schaffer, T., Hacker, V., Hejze, T., Tschinder, T., Besenhard, J. O., & Prenninger, P. (2005). Introduction of an improved gas chromatographic analysis and comparison of methods to determine methanol crossover in DMFCs. Journal of Power Sources, 145(2), 188-198. doi:10.1016/j.jpowsour.2004.11.074 es_ES
dc.description.references Zhang, J., & Wang, Y. (2004). Modeling the Effects of Methanol Crossover on the DMFC. Fuel Cells, 4(12), 90-95. doi:10.1002/fuce.200400005 es_ES
dc.description.references Casalegno, A., Grassini, P., & Marchesi, R. (2007). Experimental analysis of methanol cross-over in a direct methanol fuel cell. Applied Thermal Engineering, 27(4), 748-754. doi:10.1016/j.applthermaleng.2006.10.007 es_ES
dc.description.references García, B. L., Sethuraman, V. A., Weidner, J. W., White, R. E., & Dougal, R. (2004). Mathematical Model of a Direct Methanol Fuel Cell. Journal of Fuel Cell Science and Technology, 1(1), 43. doi:10.1115/1.1782927 es_ES
dc.description.references Munichandraiah, N., McGrath, K., Prakash, G. K. S., Aniszfeld, R., & Olah, G. A. (2003). A potentiometric method of monitoring methanol crossover through polymer electrolyte membranes of direct methanol fuel cells. Journal of Power Sources, 117(1-2), 98-101. doi:10.1016/s0378-7753(03)00353-7 es_ES
dc.description.references Bello, M., Zaidi, S. M. J., & Rahman, S. U. (2008). Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application. Journal of Membrane Science, 322(1), 218-224. doi:10.1016/j.memsci.2008.05.042 es_ES
dc.description.references Liu, J., Wang, H., Cheng, S., & Chan, K.-Y. (2005). Nafion–polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells. Journal of Membrane Science, 246(1), 95-101. doi:10.1016/j.memsci.2004.08.016 es_ES
dc.description.references Mollá, S., & Compañ, V. (2011). Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. Journal of Membrane Science, 372(1-2), 191-200. doi:10.1016/j.memsci.2011.02.001 es_ES
dc.description.references Garrido, J., & Compan, V. (1992). Asymmetry potential in inhomogeneous membranes. The Journal of Physical Chemistry, 96(6), 2721-2724. doi:10.1021/j100185a059 es_ES
dc.description.references Wakabayashi, N., Uchida, H., & Watanabe, M. (2002). Temperature-Dependence of Methanol Oxidation Rates at PtRu and Pt Electrodes. Electrochemical and Solid-State Letters, 5(11), E62. doi:10.1149/1.1513021 es_ES
dc.description.references Mukoma, P., Jooste, B. R., & Vosloo, H. C. M. (2004). A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations. Journal of Membrane Science, 243(1-2), 293-299. doi:10.1016/j.memsci.2004.06.032 es_ES
dc.description.references Kim, D. W., Choi, H.-S., Lee, C., Blumstein, A., & Kang, Y. (2004). Investigation on methanol permeability of Nafion modified by self-assembled clay-nanocomposite multilayers. Electrochimica Acta, 50(2-3), 659-662. doi:10.1016/j.electacta.2004.01.125 es_ES
dc.description.references Tsai, J.-C., Cheng, H.-P., Kuo, J.-F., Huang, Y.-H., & Chen, C.-Y. (2009). Blended Nafion®/SPEEK direct methanol fuel cell membranes for reduced methanol permeability. Journal of Power Sources, 189(2), 958-965. doi:10.1016/j.jpowsour.2008.12.071 es_ES
dc.description.references EVERY, H., HICKNER, M., MCGRATH, J., & ZAWODZINSKIJR, T. (2005). An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes. Journal of Membrane Science, 250(1-2), 183-188. doi:10.1016/j.memsci.2004.10.026 es_ES
dc.description.references Ramya, K., & Dhathathreyan, K. S. (2008). Methanol crossover studies on heat-treated Nafion® membranes. Journal of Membrane Science, 311(1-2), 121-127. doi:10.1016/j.memsci.2007.12.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem