Mostrar el registro sencillo del ítem
dc.contributor.author | Mollá Romano, Sergio | es_ES |
dc.contributor.author | Compañ Moreno, Vicente | es_ES |
dc.contributor.author | Lafuente, S.L. | es_ES |
dc.contributor.author | Prats, Joan | es_ES |
dc.date.accessioned | 2013-04-19T12:01:17Z | |
dc.date.issued | 2011-10-05 | |
dc.identifier.issn | 1615-6846 | |
dc.identifier.uri | http://hdl.handle.net/10251/28080 | |
dc.description.abstract | [EN] Methanol crossover through polymer electrolyte membranes is a critical issue and causes an important reduction of per- formance in direct methanol fuel cells (DMFCs). Measuring the evolution of CO 2 gas in the cathode is a common method to determine the methanol crossover under real operating conditions, although an easier and simpler method is prefer- able for the screening of membranes during their step of development. In this sense, this work has been focused on the ex situ characterization of the methanol permeability in novel nanofiber-reinforced composite Nafion/PVA mem- branes for DMFC application by means of three different experimental procedures: (a) potentiometric method, (b) gas chromatography technique, and (c) measuring the density. It was found that all these methods resulted in comparable results and it was observed that the incorporation of the PVA nanofiber phase within the Nafion ¿ matrix causes a remarkable reduction of the methanol permeability. The optimal choice of the most suitable technique depends on the accuracy expected for the methanol concentration, the availability of the required instrumental, and the complexity of the procedure. | es_ES |
dc.description.sponsorship | This work has been supported by the Valencian Institute of Small and Medium-Sized Enterprises (IMPIVA) and the European Regional Development Funds, through the project IMIDIC/2010/13. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | en_EN |
dc.relation.ispartof | Fuel Cells | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | DMFC | es_ES |
dc.subject | Nanocomposite mafion membranes | es_ES |
dc.subject | Methanol permeability | es_ES |
dc.subject | Nanofibers | es_ES |
dc.subject | PVA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/fuce.201100004 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IMIDIC%2F2010%2F013/ES/DESENVOLUPAMENT DE MATERIALS I COMPONENTS PER A PILES DE COMBUSTIBLE DE MEMBRANES D’INTERCANVI PROTÒNIC (PEMFC) I DE METANOL DIRECTE (DMFC)/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Mollá Romano, S.; Compañ Moreno, V.; Lafuente, S.; Prats, J. (2011). On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies. Fuel Cells. 11(6):897-906. https://doi.org/10.1002/fuce.201100004 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/fuce.201100004/pdf | es_ES |
dc.description.upvformatpinicio | 897 | es_ES |
dc.description.upvformatpfin | 906 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 193905 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Instituto de la Pequeña y Mediana Industria de la Generalitat Valenciana | es_ES |
dc.description.references | Handbook of Fuel Cells-Fundamentals, Technology and Applications Vol. 3 2003 | es_ES |
dc.description.references | Neergat, M., Leveratto, D., & Stimming, U. (2002). Catalysts for Direct Methanol Fuel Cells. Fuel Cells, 2(1), 25-30. doi:10.1002/1615-6854(20020815)2:1<25::aid-fuce25>3.0.co;2-4 | es_ES |
dc.description.references | Mauritz, K. A., Mountz, D. A., Reuschle, D. A., & Blackwell, R. I. (2004). Self-assembled organic/inorganic hybrids as membrane materials. Electrochimica Acta, 50(2-3), 565-569. doi:10.1016/j.electacta.2003.09.051 | es_ES |
dc.description.references | Deng, Q., Hu, Y., Moore, R. B., McCormick, C. L., & Mauritz, K. A. (1997). Nafion/ORMOSIL Hybrids viain SituSol−Gel Reactions. 3. Pyrene Fluorescence Probe Investigations of Nanoscale Environment. Chemistry of Materials, 9(1), 36-44. doi:10.1021/cm950552u | es_ES |
dc.description.references | Kim, Y.-M., Park, K.-W., Choi, J.-H., Park, I.-S., & Sung, Y.-E. (2003). A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochemistry Communications, 5(7), 571-574. doi:10.1016/s1388-2481(03)00130-9 | es_ES |
dc.description.references | Smit, M. A., Ocampo, A. L., Espinosa-Medina, M. A., & Sebastián, P. J. (2003). A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. Journal of Power Sources, 124(1), 59-64. doi:10.1016/s0378-7753(03)00730-4 | es_ES |
dc.description.references | Chen, C.-Y., Garnica-Rodriguez, J. I., Duke, M. C., Costa, R. F. D., Dicks, A. L., & da Costa, J. C. D. (2007). Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. Journal of Power Sources, 166(2), 324-330. doi:10.1016/j.jpowsour.2006.12.102 | es_ES |
dc.description.references | Fernández-Carretero, F. J., Compañ, V., & Riande, E. (2007). Hybrid ion-exchange membranes for fuel cells and separation processes. Journal of Power Sources, 173(1), 68-76. doi:10.1016/j.jpowsour.2007.07.011 | es_ES |
dc.description.references | DELUCA, N., & ELABD, Y. (2006). Nafion®/poly(vinyl alcohol) blends: Effect of composition and annealing temperature on transport properties. Journal of Membrane Science, 282(1-2), 217-224. doi:10.1016/j.memsci.2006.05.025 | es_ES |
dc.description.references | Mollá, S., & Compañ, V. (2011). Performance of composite Nafion/PVA membranes for direct methanol fuel cells. Journal of Power Sources, 196(5), 2699-2708. doi:10.1016/j.jpowsour.2010.11.022 | es_ES |
dc.description.references | Kreuer, K.-D. (1996). Proton Conductivity: Materials and Applications. Chemistry of Materials, 8(3), 610-641. doi:10.1021/cm950192a | es_ES |
dc.description.references | Snyder, J. (2002). Polymer electrolytes and polyelectrolytes: Monte Carlo simulations of thermal effects on conduction. Solid State Ionics, 147(3-4), 249-257. doi:10.1016/s0167-2738(02)00025-5 | es_ES |
dc.description.references | Paddison, S. J. (2003). Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes. Annual Review of Materials Research, 33(1), 289-319. doi:10.1146/annurev.matsci.33.022702.155102 | es_ES |
dc.description.references | Proton Conducting Membrane Fuel Cells 1995 | es_ES |
dc.description.references | Jiang, R., & Chu, D. (2002). CO[sub 2] Crossover Through a Nafion Membrane in a Direct Methanol Fuel Cell. Electrochemical and Solid-State Letters, 5(7), A156. doi:10.1149/1.1480136 | es_ES |
dc.description.references | Qi, Z., & Kaufman, A. (2002). Open circuit voltage and methanol crossover in DMFCs. Journal of Power Sources, 110(1), 177-185. doi:10.1016/s0378-7753(02)00268-9 | es_ES |
dc.description.references | Eccarius, S., Garcia, B. L., Hebling, C., & Weidner, J. W. (2008). Experimental validation of a methanol crossover model in DMFC applications. Journal of Power Sources, 179(2), 723-733. doi:10.1016/j.jpowsour.2007.11.102 | es_ES |
dc.description.references | Tamaki, T., Yamauchi, A., Ito, T., Ohashi, H., & Yamaguchi, T. (2011). The Effect of Methanol Crossover on the Cathode Overpotential of DMFCs. Fuel Cells, 11(3), 394-403. doi:10.1002/fuce.201000141 | es_ES |
dc.description.references | Pivovar, B. S., Wang, Y., & Cussler, E. L. (1999). Pervaporation membranes in direct methanol fuel cells. Journal of Membrane Science, 154(2), 155-162. doi:10.1016/s0376-7388(98)00264-6 | es_ES |
dc.description.references | Schaffer, T., Hacker, V., Hejze, T., Tschinder, T., Besenhard, J. O., & Prenninger, P. (2005). Introduction of an improved gas chromatographic analysis and comparison of methods to determine methanol crossover in DMFCs. Journal of Power Sources, 145(2), 188-198. doi:10.1016/j.jpowsour.2004.11.074 | es_ES |
dc.description.references | Zhang, J., & Wang, Y. (2004). Modeling the Effects of Methanol Crossover on the DMFC. Fuel Cells, 4(12), 90-95. doi:10.1002/fuce.200400005 | es_ES |
dc.description.references | Casalegno, A., Grassini, P., & Marchesi, R. (2007). Experimental analysis of methanol cross-over in a direct methanol fuel cell. Applied Thermal Engineering, 27(4), 748-754. doi:10.1016/j.applthermaleng.2006.10.007 | es_ES |
dc.description.references | García, B. L., Sethuraman, V. A., Weidner, J. W., White, R. E., & Dougal, R. (2004). Mathematical Model of a Direct Methanol Fuel Cell. Journal of Fuel Cell Science and Technology, 1(1), 43. doi:10.1115/1.1782927 | es_ES |
dc.description.references | Munichandraiah, N., McGrath, K., Prakash, G. K. S., Aniszfeld, R., & Olah, G. A. (2003). A potentiometric method of monitoring methanol crossover through polymer electrolyte membranes of direct methanol fuel cells. Journal of Power Sources, 117(1-2), 98-101. doi:10.1016/s0378-7753(03)00353-7 | es_ES |
dc.description.references | Bello, M., Zaidi, S. M. J., & Rahman, S. U. (2008). Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application. Journal of Membrane Science, 322(1), 218-224. doi:10.1016/j.memsci.2008.05.042 | es_ES |
dc.description.references | Liu, J., Wang, H., Cheng, S., & Chan, K.-Y. (2005). Nafion–polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells. Journal of Membrane Science, 246(1), 95-101. doi:10.1016/j.memsci.2004.08.016 | es_ES |
dc.description.references | Mollá, S., & Compañ, V. (2011). Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. Journal of Membrane Science, 372(1-2), 191-200. doi:10.1016/j.memsci.2011.02.001 | es_ES |
dc.description.references | Garrido, J., & Compan, V. (1992). Asymmetry potential in inhomogeneous membranes. The Journal of Physical Chemistry, 96(6), 2721-2724. doi:10.1021/j100185a059 | es_ES |
dc.description.references | Wakabayashi, N., Uchida, H., & Watanabe, M. (2002). Temperature-Dependence of Methanol Oxidation Rates at PtRu and Pt Electrodes. Electrochemical and Solid-State Letters, 5(11), E62. doi:10.1149/1.1513021 | es_ES |
dc.description.references | Mukoma, P., Jooste, B. R., & Vosloo, H. C. M. (2004). A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations. Journal of Membrane Science, 243(1-2), 293-299. doi:10.1016/j.memsci.2004.06.032 | es_ES |
dc.description.references | Kim, D. W., Choi, H.-S., Lee, C., Blumstein, A., & Kang, Y. (2004). Investigation on methanol permeability of Nafion modified by self-assembled clay-nanocomposite multilayers. Electrochimica Acta, 50(2-3), 659-662. doi:10.1016/j.electacta.2004.01.125 | es_ES |
dc.description.references | Tsai, J.-C., Cheng, H.-P., Kuo, J.-F., Huang, Y.-H., & Chen, C.-Y. (2009). Blended Nafion®/SPEEK direct methanol fuel cell membranes for reduced methanol permeability. Journal of Power Sources, 189(2), 958-965. doi:10.1016/j.jpowsour.2008.12.071 | es_ES |
dc.description.references | EVERY, H., HICKNER, M., MCGRATH, J., & ZAWODZINSKIJR, T. (2005). An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes. Journal of Membrane Science, 250(1-2), 183-188. doi:10.1016/j.memsci.2004.10.026 | es_ES |
dc.description.references | Ramya, K., & Dhathathreyan, K. S. (2008). Methanol crossover studies on heat-treated Nafion® membranes. Journal of Membrane Science, 311(1-2), 121-127. doi:10.1016/j.memsci.2007.12.001 | es_ES |