- -

On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies

Mostrar el registro completo del ítem

Mollá Romano, S.; Compañ Moreno, V.; Lafuente, S.; Prats, J. (2011). On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies. Fuel Cells. 11(6):897-906. https://doi.org/10.1002/fuce.201100004

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28080

Ficheros en el ítem

Metadatos del ítem

Título: On the methanol permeability through pristine Nafion and Nafion/PVA membranas measured by different techniques. A comparison of methodologies
Autor: Mollá Romano, Sergio Compañ Moreno, Vicente Lafuente, S.L. Prats, Joan
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Methanol crossover through polymer electrolyte membranes is a critical issue and causes an important reduction of per- formance in direct methanol fuel cells (DMFCs). Measuring the evolution of CO 2 gas in the ...[+]
Palabras clave: DMFC , Nanocomposite mafion membranes , Methanol permeability , Nanofibers , PVA
Derechos de uso: Cerrado
Fuente:
Fuel Cells. (issn: 1615-6846 )
DOI: 10.1002/fuce.201100004
Editorial:
Wiley-VCH Verlag
Versión del editor: http://onlinelibrary.wiley.com/doi/10.1002/fuce.201100004/pdf
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//IMIDIC%2F2010%2F013/ES/DESENVOLUPAMENT DE MATERIALS I COMPONENTS PER A PILES DE COMBUSTIBLE DE MEMBRANES D’INTERCANVI PROTÒNIC (PEMFC) I DE METANOL DIRECTE (DMFC)/
Agradecimientos:
This work has been supported by the Valencian Institute of Small and Medium-Sized Enterprises (IMPIVA) and the European Regional Development Funds, through the project IMIDIC/2010/13.
Tipo: Artículo

References

Handbook of Fuel Cells-Fundamentals, Technology and Applications Vol. 3 2003

Neergat, M., Leveratto, D., & Stimming, U. (2002). Catalysts for Direct Methanol Fuel Cells. Fuel Cells, 2(1), 25-30. doi:10.1002/1615-6854(20020815)2:1<25::aid-fuce25>3.0.co;2-4

Mauritz, K. A., Mountz, D. A., Reuschle, D. A., & Blackwell, R. I. (2004). Self-assembled organic/inorganic hybrids as membrane materials. Electrochimica Acta, 50(2-3), 565-569. doi:10.1016/j.electacta.2003.09.051 [+]
Handbook of Fuel Cells-Fundamentals, Technology and Applications Vol. 3 2003

Neergat, M., Leveratto, D., & Stimming, U. (2002). Catalysts for Direct Methanol Fuel Cells. Fuel Cells, 2(1), 25-30. doi:10.1002/1615-6854(20020815)2:1<25::aid-fuce25>3.0.co;2-4

Mauritz, K. A., Mountz, D. A., Reuschle, D. A., & Blackwell, R. I. (2004). Self-assembled organic/inorganic hybrids as membrane materials. Electrochimica Acta, 50(2-3), 565-569. doi:10.1016/j.electacta.2003.09.051

Deng, Q., Hu, Y., Moore, R. B., McCormick, C. L., & Mauritz, K. A. (1997). Nafion/ORMOSIL Hybrids viain SituSol−Gel Reactions. 3. Pyrene Fluorescence Probe Investigations of Nanoscale Environment. Chemistry of Materials, 9(1), 36-44. doi:10.1021/cm950552u

Kim, Y.-M., Park, K.-W., Choi, J.-H., Park, I.-S., & Sung, Y.-E. (2003). A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochemistry Communications, 5(7), 571-574. doi:10.1016/s1388-2481(03)00130-9

Smit, M. A., Ocampo, A. L., Espinosa-Medina, M. A., & Sebastián, P. J. (2003). A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. Journal of Power Sources, 124(1), 59-64. doi:10.1016/s0378-7753(03)00730-4

Chen, C.-Y., Garnica-Rodriguez, J. I., Duke, M. C., Costa, R. F. D., Dicks, A. L., & da Costa, J. C. D. (2007). Nafion/polyaniline/silica composite membranes for direct methanol fuel cell application. Journal of Power Sources, 166(2), 324-330. doi:10.1016/j.jpowsour.2006.12.102

Fernández-Carretero, F. J., Compañ, V., & Riande, E. (2007). Hybrid ion-exchange membranes for fuel cells and separation processes. Journal of Power Sources, 173(1), 68-76. doi:10.1016/j.jpowsour.2007.07.011

DELUCA, N., & ELABD, Y. (2006). Nafion®/poly(vinyl alcohol) blends: Effect of composition and annealing temperature on transport properties. Journal of Membrane Science, 282(1-2), 217-224. doi:10.1016/j.memsci.2006.05.025

Mollá, S., & Compañ, V. (2011). Performance of composite Nafion/PVA membranes for direct methanol fuel cells. Journal of Power Sources, 196(5), 2699-2708. doi:10.1016/j.jpowsour.2010.11.022

Kreuer, K.-D. (1996). Proton Conductivity:  Materials and Applications. Chemistry of Materials, 8(3), 610-641. doi:10.1021/cm950192a

Snyder, J. (2002). Polymer electrolytes and polyelectrolytes: Monte Carlo simulations of thermal effects on conduction. Solid State Ionics, 147(3-4), 249-257. doi:10.1016/s0167-2738(02)00025-5

Paddison, S. J. (2003). Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes. Annual Review of Materials Research, 33(1), 289-319. doi:10.1146/annurev.matsci.33.022702.155102

Proton Conducting Membrane Fuel Cells 1995

Jiang, R., & Chu, D. (2002). CO[sub 2] Crossover Through a Nafion Membrane in a Direct Methanol Fuel Cell. Electrochemical and Solid-State Letters, 5(7), A156. doi:10.1149/1.1480136

Qi, Z., & Kaufman, A. (2002). Open circuit voltage and methanol crossover in DMFCs. Journal of Power Sources, 110(1), 177-185. doi:10.1016/s0378-7753(02)00268-9

Eccarius, S., Garcia, B. L., Hebling, C., & Weidner, J. W. (2008). Experimental validation of a methanol crossover model in DMFC applications. Journal of Power Sources, 179(2), 723-733. doi:10.1016/j.jpowsour.2007.11.102

Tamaki, T., Yamauchi, A., Ito, T., Ohashi, H., & Yamaguchi, T. (2011). The Effect of Methanol Crossover on the Cathode Overpotential of DMFCs. Fuel Cells, 11(3), 394-403. doi:10.1002/fuce.201000141

Pivovar, B. S., Wang, Y., & Cussler, E. L. (1999). Pervaporation membranes in direct methanol fuel cells. Journal of Membrane Science, 154(2), 155-162. doi:10.1016/s0376-7388(98)00264-6

Schaffer, T., Hacker, V., Hejze, T., Tschinder, T., Besenhard, J. O., & Prenninger, P. (2005). Introduction of an improved gas chromatographic analysis and comparison of methods to determine methanol crossover in DMFCs. Journal of Power Sources, 145(2), 188-198. doi:10.1016/j.jpowsour.2004.11.074

Zhang, J., & Wang, Y. (2004). Modeling the Effects of Methanol Crossover on the DMFC. Fuel Cells, 4(12), 90-95. doi:10.1002/fuce.200400005

Casalegno, A., Grassini, P., & Marchesi, R. (2007). Experimental analysis of methanol cross-over in a direct methanol fuel cell. Applied Thermal Engineering, 27(4), 748-754. doi:10.1016/j.applthermaleng.2006.10.007

García, B. L., Sethuraman, V. A., Weidner, J. W., White, R. E., & Dougal, R. (2004). Mathematical Model of a Direct Methanol Fuel Cell. Journal of Fuel Cell Science and Technology, 1(1), 43. doi:10.1115/1.1782927

Munichandraiah, N., McGrath, K., Prakash, G. K. S., Aniszfeld, R., & Olah, G. A. (2003). A potentiometric method of monitoring methanol crossover through polymer electrolyte membranes of direct methanol fuel cells. Journal of Power Sources, 117(1-2), 98-101. doi:10.1016/s0378-7753(03)00353-7

Bello, M., Zaidi, S. M. J., & Rahman, S. U. (2008). Proton and methanol transport behavior of SPEEK/TPA/MCM-41 composite membranes for fuel cell application. Journal of Membrane Science, 322(1), 218-224. doi:10.1016/j.memsci.2008.05.042

Liu, J., Wang, H., Cheng, S., & Chan, K.-Y. (2005). Nafion–polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells. Journal of Membrane Science, 246(1), 95-101. doi:10.1016/j.memsci.2004.08.016

Mollá, S., & Compañ, V. (2011). Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. Journal of Membrane Science, 372(1-2), 191-200. doi:10.1016/j.memsci.2011.02.001

Garrido, J., & Compan, V. (1992). Asymmetry potential in inhomogeneous membranes. The Journal of Physical Chemistry, 96(6), 2721-2724. doi:10.1021/j100185a059

Wakabayashi, N., Uchida, H., & Watanabe, M. (2002). Temperature-Dependence of Methanol Oxidation Rates at PtRu and Pt Electrodes. Electrochemical and Solid-State Letters, 5(11), E62. doi:10.1149/1.1513021

Mukoma, P., Jooste, B. R., & Vosloo, H. C. M. (2004). A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations. Journal of Membrane Science, 243(1-2), 293-299. doi:10.1016/j.memsci.2004.06.032

Kim, D. W., Choi, H.-S., Lee, C., Blumstein, A., & Kang, Y. (2004). Investigation on methanol permeability of Nafion modified by self-assembled clay-nanocomposite multilayers. Electrochimica Acta, 50(2-3), 659-662. doi:10.1016/j.electacta.2004.01.125

Tsai, J.-C., Cheng, H.-P., Kuo, J.-F., Huang, Y.-H., & Chen, C.-Y. (2009). Blended Nafion®/SPEEK direct methanol fuel cell membranes for reduced methanol permeability. Journal of Power Sources, 189(2), 958-965. doi:10.1016/j.jpowsour.2008.12.071

EVERY, H., HICKNER, M., MCGRATH, J., & ZAWODZINSKIJR, T. (2005). An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes. Journal of Membrane Science, 250(1-2), 183-188. doi:10.1016/j.memsci.2004.10.026

Ramya, K., & Dhathathreyan, K. S. (2008). Methanol crossover studies on heat-treated Nafion® membranes. Journal of Membrane Science, 311(1-2), 121-127. doi:10.1016/j.memsci.2007.12.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem