- -

Vibration Reduction Index of a T-Junction With a Flexible Interlayer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vibration Reduction Index of a T-Junction With a Flexible Interlayer

Mostrar el registro completo del ítem

Alba Fernández, J.; Escuder Silla, EM.; Ramis Soriano, J.; Rey Tormos, RMD.; Segovia, E. (2012). Vibration Reduction Index of a T-Junction With a Flexible Interlayer. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME. 134:1-10. doi:10.1115/1.4004675

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28279

Ficheros en el ítem

Metadatos del ítem

Título: Vibration Reduction Index of a T-Junction With a Flexible Interlayer
Autor: Alba Fernández, Jesús Escuder Silla, Eva María Ramis Soriano, Jaime Rey Tormos, Romina María del Segovia, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
[EN] This paper describes the procedure followed to evaluate the vibration reduction index for T-junctions with inserted flexible elements and proposes new equations to complement the standard EN 12354-1:2000. The experiment ...[+]
Palabras clave: Flanking transmission , NAH , Scale model , Vibration reduction index , Average velocity , Elastic layers , Expression of uncertainty , Flexible elements , Nearfield Acoustic Holography , Scale models , Sound reduction index , T junctions , Vibration reductions , Accelerometers , Acoustic holography , Uncertainty analysis
Derechos de uso: Cerrado
Fuente:
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME. (issn: 1048-9002 ) (eissn: 1528-8927 )
DOI: 10.1115/1.4004675
Editorial:
American Society of Mechanical Engineers (ASME)
Versión del editor: http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=1471664
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//BIA2007-68098-C02-01/ES/PREDICCION DEL AISLAMIENTO ACUSTICO EN LA EDIFICACION/
info:eu-repo/grantAgreement/MEC//BIA2007-68098-C02-02/ES/MODELADO DEL RUIDO TRANSMITIDO POR FLANCOS EN LA EDIFICACION/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2007%2F112/ES/
Agradecimientos:
This work was supported by the Spanish Ministry of Science and Innovation (BIA2007-68098-C02-01 and BIA2007-68098-C02-02) and also by the Conselleria de Empresa Universidad y Ciencia (APOSTD/2007/112).
Tipo: Artículo

References

Spanish Standard, UNE-EN 12354-1, 2000, “Building Acoustics–Estimation of Acoustic Performance of Buildings From the Performance Elements. Part 1: Airborne Sound Insulation Between Rooms.”

Spanish Standard, UNE-EN 12354-2, 2001, “Building Acoustics–Estimation of Acoustic Performance of Buildings From the Performance of Elements. Part 2: Impact Sound Insulation Between Rooms.”

Gerretsen, E. (1979). Calculation of the sound transmission between dwellings by partitions and flanking structures. Applied Acoustics, 12(6), 413-433. doi:10.1016/0003-682x(79)90001-x [+]
Spanish Standard, UNE-EN 12354-1, 2000, “Building Acoustics–Estimation of Acoustic Performance of Buildings From the Performance Elements. Part 1: Airborne Sound Insulation Between Rooms.”

Spanish Standard, UNE-EN 12354-2, 2001, “Building Acoustics–Estimation of Acoustic Performance of Buildings From the Performance of Elements. Part 2: Impact Sound Insulation Between Rooms.”

Gerretsen, E. (1979). Calculation of the sound transmission between dwellings by partitions and flanking structures. Applied Acoustics, 12(6), 413-433. doi:10.1016/0003-682x(79)90001-x

Gerretsen, E. (1986). Calculation of airborne and impact sound insulation between dwellings. Applied Acoustics, 19(4), 245-264. doi:10.1016/0003-682x(86)90001-0

Mahn, J. P. , 2009, “Prediction of Flanking Noise Transmission in Lightweight Building Constructions: A Theoretical and Experimental Evaluation of the Application of EN12354-1,” Ph.D. Thesis, University of Canterbury.

Mahn, J., & Pearse, J. (2009). On the Uncertainty of the EN12354-1: Estimate of the Flanking Sound Reduction Index Due to the Uncertainty of the Input Data. Building Acoustics, 16(3), 199-231. doi:10.1260/135101009789877059

Pedersen, D. B. (1999). Evaluation of EN 12354 Part 1 and 2 for Nordic Dwelling Houses. Building Acoustics, 6(3), 259-268. doi:10.1260/1351010991501446

Metzen, H. A. (1999). Accuracy of CEN-Prediction Models Applied to German Building Situations. Building Acoustics, 6(3), 325-340. doi:10.1260/1351010991501374

Craik, R. J. . (2001). The contribution of long flanking paths to sound transmission in buildings. Applied Acoustics, 62(1), 29-46. doi:10.1016/s0003-682x(00)00020-7

Galbrun, L. (2008). The prediction of airborne sound transmission between two rooms using first-order flanking paths. Applied Acoustics, 69(12), 1332-1342. doi:10.1016/j.apacoust.2007.08.010

International Organization for Standardization (ISO), 10848-1:2006 Acoustics — Laboratory Measurement of the Flanking Transmission of Airborne and Impact Sound Between Adjoining Rooms -- Part 1: Frame Document.

Kling, C. , 2008, “Investigations Into Damping in Building Acoustics by Use of Downscaled Models,” Ph.D Dissertation, RWTH Aachen, Logos Verlag, Berlin.

International Organization for Standardization (ISO), 10848-3:2006 Acoustics — Laboratory Measurement of the Flanking Transmission of Airborne and Impact Sound Between Adjoining Rooms -- Part 3: Application to Light Elements When the Junction has a Substantial Influence.

Cervera, F., Estelles, H., Galvez, F., & Belmar, F. (1997). Sound intensity in the near field above a vibrating flat plate. Noise Control Engineering Journal, 45(5), 193. doi:10.3397/1.2828440

Maynard, J. D., and Williams, E. G., “Nearfield Holography, a new technique for noise radiation measurement,” Noise. Con., 81.

Maynard, J. D., Williams, E. G., & Lee, Y. (1985). Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH. The Journal of the Acoustical Society of America, 78(4), 1395-1413. doi:10.1121/1.392911

Brutel-Vuilmet, C., Guigou-Carter, C., and Villot, M., “A Study of the Influence of Incidence Angle on Sound Reduction Index Using NAH-Phonoscopy.”

Alba, J., Escuder, E., Ramis, J., & Del Rey, R. (2009). Characterization of impervious layers using scale models and an inverse method. Journal of Sound and Vibration, 326(1-2), 190-204. doi:10.1016/j.jsv.2009.04.045

Al-Bassyiouni, M., & Balachandran, B. (2005). Sound transmission through a flexible panel into an enclosure: structural–acoustics model. Journal of Sound and Vibration, 284(1-2), 467-486. doi:10.1016/j.jsv.2004.06.040

Martarelli, M., & Revel, G. M. (2006). Laser Doppler vibrometry and near-field acoustic holography: Different approaches for surface velocity distribution measurements. Mechanical Systems and Signal Processing, 20(6), 1312-1321. doi:10.1016/j.ymssp.2005.11.011

Pedersen, D. B. (1995). Estimation of vibration attenuation through junctions of building structures. Applied Acoustics, 46(3), 285-305. doi:10.1016/0003-682x(95)00025-5

Jeon, J. Y., Ryu, J. K., Kim, Y. H., & Sato, S. (2009). Influence of absorption properties of materials on the accuracy of simulated acoustical measures in 1:10 scale model test. Applied Acoustics, 70(4), 615-625. doi:10.1016/j.apacoust.2008.06.009

Talaske, R., & Siebein, G. (1990). The use of an acoustic scale model for the design of the Escondido Civic Center 1500‐seat multi‐use theatre. The Journal of the Acoustical Society of America, 88(S1), S113-S113. doi:10.1121/1.2028516

Ismail, M. R., & Oldham, D. J. (2005). A scale model investigation of sound reflection from building façades. Applied Acoustics, 66(2), 123-147. doi:10.1016/j.apacoust.2004.07.007

Wittstock, V., Schmelzer, M., & Kling, C. (2008). On the use of scaled models in building acoustics. The Journal of the Acoustical Society of America, 123(5), 3502-3502. doi:10.1121/1.2934380

Williams, E. G., Dardy, H. D., & Fink, R. G. (1985). Nearfield acoustical holography using an underwater, automated scanner. The Journal of the Acoustical Society of America, 78(2), 789-798. doi:10.1121/1.392449

Williams, E. G., & Mann, J. A. (2000). Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. The Journal of the Acoustical Society of America, 108(4), 1373-1373. doi:10.1121/1.1289662

Williams, E. G. (1983). Numerical evaluation of the radiation from unbaffled, finite plates using the FFT. The Journal of the Acoustical Society of America, 74(1), 343-347. doi:10.1121/1.389683

Williams, E. G., & Maynard, J. D. (1982). Numerical evaluation of the Rayleigh integral for planar radiators using the FFT. The Journal of the Acoustical Society of America, 72(6), 2020-2030. doi:10.1121/1.388633

Veronesi, W. A., & Maynard, J. D. (1987). Nearfield acoustic holography (NAH) II. Holographic reconstruction algorithms and computer implementation. The Journal of the Acoustical Society of America, 81(5), 1307-1322. doi:10.1121/1.394536

EN 29052–1,1992, “Acoustics – Determination of Dynamic Stiffness. Part 1: Materials Used Under Floating Floors in Dwellings,” 89/106/EEC.

ISO/IEC Guide 98-3:2008, “Uncertainty of Measurement - Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995),” International Standardization Organization. Ginebra, Suiza, 1995.

Molares, A. R., Seoane, M. A. S., Giménez, A. P., & Guijarro, S. T. (2008). The influence of positional uncertainty in free-field microphone calibration. Metrologia, 45(2), 168-177. doi:10.1088/0026-1394/45/2/006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem