- -

Multidisciplinary approach to cylindrical anisotropic metamaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multidisciplinary approach to cylindrical anisotropic metamaterials

Mostrar el registro completo del ítem

Carbonell Olivares, J.; Torrent Martí, D.; Díaz Rubio, A.; Sánchez-Dehesa Moreno-Cid, J. (2011). Multidisciplinary approach to cylindrical anisotropic metamaterials. New Journal of Physics. 13:103034-103034. https://doi.org/10.1088/1367-2630/13/10/103034

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28288

Ficheros en el ítem

Metadatos del ítem

Título: Multidisciplinary approach to cylindrical anisotropic metamaterials
Autor: Carbonell Olivares, Jorge Torrent Martí, Daniel Díaz Rubio, Ana Sánchez-Dehesa Moreno-Cid, José
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple ...[+]
Palabras clave: Analytical model , Anisotropic features , Anisotropic metamaterials , Corrugated microstructure , Cylindrical cavities , Effective medium , Effective medium theories , Multi-disciplinary approach , Wave propagation velocities , Acoustic wave propagation , Anisotropy , Behavioral research , Computer simulation , Electromagnetic waves , Mathematical models , Metamaterials , Anisotropic media
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
New Journal of Physics. (issn: 1367-2630 )
DOI: 10.1088/1367-2630/13/10/103034
Editorial:
IOP Publishing: Open Access Journals
Versión del editor: http://dx.doi.org/10.1088/1367-2630/13/10/103034
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/
info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/
Agradecimientos:
The authors acknowledge financial support from the Spanish MICINN (TEC 2010-19751 and Consolider CSD2008-00066) and from the US Office of Naval Research (N000140910554). DT also acknowledges support from the program 'Campus ...[+]
Tipo: Artículo

References

Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192

Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907

Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 [+]
Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192

Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907

Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966

Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628

Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301

Jacob, Z., Alekseyev, L. V., & Narimanov, E. (2006). Optical Hyperlens: Far-field imaging beyond the diffraction limit. Optics Express, 14(18), 8247. doi:10.1364/oe.14.008247

Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory. The Journal of the Acoustical Society of America, 96(3), 1844-1853. doi:10.1121/1.410196

Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part II. Experiment. The Journal of the Acoustical Society of America, 96(3), 1854-1862. doi:10.1121/1.410197

Schoenberg, M., & Sen, P. N. (1983). Properties of a periodically stratified acoustic half‐space and its relation to a Biot fluid. The Journal of the Acoustical Society of America, 73(1), 61-67. doi:10.1121/1.388724

Peng, L., Ran, L., & Mortensen, N. A. (2010). Achieving anisotropy in metamaterials made of dielectric cylindrical rods. Applied Physics Letters, 96(24), 241108. doi:10.1063/1.3453446

Carbonell, J., Cervera, F., Sánchez-Dehesa, J., Arriaga, J., Gumen, L., & Krokhin, A. (2010). Homogenization of two-dimensional anisotropic dissipative photonic crystal. Applied Physics Letters, 97(23), 231122. doi:10.1063/1.3526381

Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Baquero, M. (2007). Planar slot-array antenna fed by an oversized quasi-TEM waveguide. Microwave and Optical Technology Letters, 49(8), 1875-1877. doi:10.1002/mop.22586

Ni, Y., Gao, L., & Qiu, C.-W. (2010). Achieving Invisibility of Homogeneous Cylindrically Anisotropic Cylinders. Plasmonics, 5(3), 251-258. doi:10.1007/s11468-010-9145-8

Huang, Y., Feng, Y., & Jiang, T. (2007). Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Optics Express, 15(18), 11133. doi:10.1364/oe.15.011133

Elliott, R. (1954). On the theory of corrugated plane surfaces. Transactions of the IRE Professional Group on Antennas and Propagation, 2(2), 71-81. doi:10.1109/t-ap.1954.27975

Goubau, G. (1950). Surface Waves and Their Application to Transmission Lines. Journal of Applied Physics, 21(11), 1119-1128. doi:10.1063/1.1699553

Wang, B., Jin, Y., & He, S. (2008). Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies. Applied Optics, 47(21), 3694. doi:10.1364/ao.47.003694

Kildal, P.-S. (1990). Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 38(10), 1537-1544. doi:10.1109/8.59765

Giovannini, L., Nizzoli, F., & Marvin, A. M. (1992). Theory of surface acoustic phonon normal modes and light scattering cross section in a periodically corrugated surface. Physical Review Letters, 69(10), 1572-1575. doi:10.1103/physrevlett.69.1572

Lakhtakia, A., Varadan, V. K., & Varadan, V. V. (1985). On the acoustic response of a deeply corrugated periodic surface— A hybrid T‐matrix approach. The Journal of the Acoustical Society of America, 78(6), 2100-2104. doi:10.1121/1.392669

Kundu, T., Banerjee, S., & Jata, K. V. (2006). An experimental investigation of guided wave propagation in corrugated plates showing stop bands and pass bands. The Journal of the Acoustical Society of America, 120(3), 1217-1226. doi:10.1121/1.2221534

Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301

Chew, W. C. (1999). Waves and Fields in Inhomogenous Media. doi:10.1109/9780470547052

Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71(3). doi:10.1103/physreve.71.036617

Fokin, V., Ambati, M., Sun, C., & Zhang, X. (2007). Method for retrieving effective properties of locally resonant acoustic metamaterials. Physical Review B, 76(14). doi:10.1103/physrevb.76.144302

Marcuvitz, N. (1986). Waveguide Handbook. doi:10.1049/pbew021e

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem