- -

Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials

Show full item record

Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics. 13(9):93018-93018. doi:10.1088/1367-2630/13/9/093018

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28289

Files in this item

Item Metadata

Title: Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials
Author: Torrent Martí, Daniel Sánchez-Dehesa Moreno-Cid, José
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
A multiple scattering formulation of two-dimensional (2D) acoustic metamaterials is presented. This approach is comprehensive and can lead to frequency-dependent effective parameters (scalar bulk modulus and tensorial mass ...[+]
Subjects: 2D lattice , Anisotropic effects , Anomalous behavior , Dielectric structure , Effective medium , Effective parameters , Filling fractions , Frequency-dependent , Homogenization theory , Mass densities , Mie resonance , Numerical example , Scattering formulations , Scattering interactions , Surface field , Behavioral research , Electromagnetic wave propagation , Electromagnetic waves , Electromagnetism , Frequency response , Metamaterials , Multiple scattering , Refractive index , Two dimensional , Acoustic wave scattering
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
New Journal of Physics. (issn: 1367-2630 )
DOI: 10.1088/1367-2630/13/9/093018
Publisher:
IOP Publishing: Open Access Journals
Publisher version: http://dx.doi.org/10.1088/1367-2630/13/9/093018
Project ID:
info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/
"Campus de Excelencia Internacional" 2010 UPV.
US Oficce of Naval Research under grant number N000140910554
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
Thanks:
This work was partially supported by the US Office of Naval Research under grant number N000140910554 and the Spanish Ministry of Science and Innovation under contract numbers TEC2010-19751 and CSD2008-66 (the CONSOLIDER ...[+]
Type: Artículo

References

Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734

Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644

Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301 [+]
Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734

Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644

Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301

Ambati, M., Fang, N., Sun, C., & Zhang, X. (2007). Surface resonant states and superlensing in acoustic metamaterials. Physical Review B, 75(19). doi:10.1103/physrevb.75.195447

Deng, K., Ding, Y., He, Z., Zhao, H., Shi, J., & Liu, Z. (2009). Theoretical study of subwavelength imaging by acoustic metamaterial slabs. Journal of Applied Physics, 105(12), 124909. doi:10.1063/1.3153976

Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., & Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 96(4), 041906. doi:10.1063/1.3299007

Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5). doi:10.1103/physreve.70.055602

Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134

Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301

Veselago, V. G. (1968). THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ. Soviet Physics Uspekhi, 10(4), 509-514. doi:10.1070/pu1968v010n04abeh003699

Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966

Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796

Shalaev, V. M. (2007). Optical negative-index metamaterials. Nature Photonics, 1(1), 41-48. doi:10.1038/nphoton.2006.49

Jacob, Z., Alekseyev, L. V., & Narimanov, E. (2006). Optical Hyperlens: Far-field imaging beyond the diffraction limit. Optics Express, 14(18), 8247. doi:10.1364/oe.14.008247

Zhang, X., & Liu, Z. (2008). Superlenses to overcome the diffraction limit. Nature Materials, 7(6), 435-441. doi:10.1038/nmat2141

Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561

Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045

Cummer, S. A., Rahm, M., & Schurig, D. (2008). Material parameters and vector scaling in transformation acoustics. New Journal of Physics, 10(11), 115025. doi:10.1088/1367-2630/10/11/115025

Chen, H., & Chan, C. T. (2010). Acoustic cloaking and transformation acoustics. Journal of Physics D: Applied Physics, 43(11), 113001. doi:10.1088/0022-3727/43/11/113001

Bin, L., & Ji-Ping, H. (2010). Noise Shielding Using Acoustic Metamaterials. Communications in Theoretical Physics, 53(3), 560-564. doi:10.1088/0253-6102/53/3/30

Yang, T., Cao, R. F., Luo, X. D., & Ma, H. R. (2010). Acoustic superscatterer and its multilayer realization. Applied Physics A, 99(4), 843-847. doi:10.1007/s00339-010-5609-0

Liu, Z., Chan, C. T., & Sheng, P. (2005). Analytic model of phononic crystals with local resonances. Physical Review B, 71(1). doi:10.1103/physrevb.71.014103

Ding, Y., Liu, Z., Qiu, C., & Shi, J. (2007). Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 99(9). doi:10.1103/physrevlett.99.093904

Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601

Wang, Z. G., Lee, S. H., Kim, C. K., Park, C. M., Nahm, K., & Nikitov, S. A. (2008). Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. Journal of Applied Physics, 103(6), 064907. doi:10.1063/1.2894914

Hu, X., Ho, K.-M., Chan, C. T., & Zi, J. (2008). Homogenization of acoustic metamaterials of Helmholtz resonators in fluid. Physical Review B, 77(17). doi:10.1103/physrevb.77.172301

Wu, Y., Li, J., Zhang, Z.-Q., & Chan, C. T. (2006). Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit. Physical Review B, 74(8). doi:10.1103/physrevb.74.085111

Peng, L., Ran, L., Chen, H., Zhang, H., Kong, J. A., & Grzegorczyk, T. M. (2007). Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators. Physical Review Letters, 98(15). doi:10.1103/physrevlett.98.157403

Schuller, J. A., Zia, R., Taubner, T., & Brongersma, M. L. (2007). Dielectric Metamaterials Based on Electric and Magnetic Resonances of Silicon Carbide Particles. Physical Review Letters, 99(10). doi:10.1103/physrevlett.99.107401

Vynck, K., Felbacq, D., Centeno, E., Căbuz, A. I., Cassagne, D., & Guizal, B. (2009). All-Dielectric Rod-Type Metamaterials at Optical Frequencies. Physical Review Letters, 102(13). doi:10.1103/physrevlett.102.133901

Chern, R.-L., & Liu, X.-X. (2010). Effective parameters and quasi-static resonances for periodic arrays of dielectric spheres. Journal of the Optical Society of America B, 27(3), 488. doi:10.1364/josab.27.000488

Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084. doi:10.1109/22.798002

Sarychev, A. K., McPhedran, R. C., & Shalaev, V. M. (2000). Electrodynamics of metal-dielectric composites and electromagnetic crystals. Physical Review B, 62(12), 8531-8539. doi:10.1103/physrevb.62.8531

Hu, X., Chan, C. T., Zi, J., Li, M., & Ho, K.-M. (2006). Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies. Physical Review Letters, 96(22). doi:10.1103/physrevlett.96.223901

Wu, Y., Lai, Y., & Zhang, Z.-Q. (2007). Effective medium theory for elastic metamaterials in two dimensions. Physical Review B, 76(20). doi:10.1103/physrevb.76.205313

Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302

Torrent, D., & Sánchez-Dehesa, J. (2006). Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Physical Review B, 74(22). doi:10.1103/physrevb.74.224305

Torrent, D., & Sánchez-Dehesa, J. (2008). Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 10(2), 023004. doi:10.1088/1367-2630/10/2/023004

Berryman, J. G. (1980). Long‐wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 68(6), 1809-1819. doi:10.1121/1.385171

O’Brien, S., & Pendry, J. B. (2002). Photonic band-gap effects and magnetic activity in dielectric composites. Journal of Physics: Condensed Matter, 14(15), 4035-4044. doi:10.1088/0953-8984/14/15/317

Krokhin, A. A., & Reyes, E. (2004). Homogenization of Magnetodielectric Photonic Crystals. Physical Review Letters, 93(2). doi:10.1103/physrevlett.93.023904

Felbacq, D., & Bouchitté, G. (2005). Theory of Mesoscopic Magnetism in Photonic Crystals. Physical Review Letters, 94(18). doi:10.1103/physrevlett.94.183902

Reyes, E., Krokhin, A. A., & Roberts, J. (2005). Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes. Physical Review B, 72(15). doi:10.1103/physrevb.72.155118

Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301

Spiousas, I., Torrent, D., & Sánchez-Dehesa, J. (2011). Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters, 98(24), 244102. doi:10.1063/1.3599849

Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301

Torrent, D., & Sánchez-Dehesa, J. (2007). Acoustic metamaterials for new two-dimensional sonic devices. New Journal of Physics, 9(9), 323-323. doi:10.1088/1367-2630/9/9/323

Pendry, J. B., & Li, J. (2008). An acoustic metafluid: realizing a broadband acoustic cloak. New Journal of Physics, 10(11), 115032. doi:10.1088/1367-2630/10/11/115032

Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record