- -

Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2013-04-29T08:59:24Z
dc.date.available 2013-04-29T08:59:24Z
dc.date.issued 2011-09-09
dc.identifier.issn 1367-2630
dc.identifier.uri http://hdl.handle.net/10251/28289
dc.description.abstract A multiple scattering formulation of two-dimensional (2D) acoustic metamaterials is presented. This approach is comprehensive and can lead to frequency-dependent effective parameters (scalar bulk modulus and tensorial mass density), as it is possible to have not only positive or negative ellipsoidal refractive index, but also positive or negative hyperbolic refractive index. The correction due to multiple scattering interactions is included in the theory and it is demonstrated that its contribution is important only for lattices with high filling fractions. Since the surface fields on the scatterers are mainly responsible for the anomalous behavior of the resulting effective medium, complex scatterers can be used to engineer the frequency response. Anisotropic effects are also discussed within this formulation and some numerical examples are reported. A homogenization theory is also extended to electromagnetic wave propagation in 2D lattices of dielectric structures, where Mie resonances are found to be responsible for the metamaterial behavior. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. es_ES
dc.description.sponsorship This work was partially supported by the US Office of Naval Research under grant number N000140910554 and the Spanish Ministry of Science and Innovation under contract numbers TEC2010-19751 and CSD2008-66 (the CONSOLIDER program). Daniel Torrent also acknowledges support from the contract provided by the program 'Campus de Excelencia Internacional' 2010 UPV. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Open Access Journals es_ES
dc.relation "Campus de Excelencia Internacional" 2010 UPV. es_ES
dc.relation.ispartof New Journal of Physics es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject 2D lattice es_ES
dc.subject Anisotropic effects es_ES
dc.subject Anomalous behavior es_ES
dc.subject Dielectric structure es_ES
dc.subject Effective medium es_ES
dc.subject Effective parameters es_ES
dc.subject Filling fractions es_ES
dc.subject Frequency-dependent es_ES
dc.subject Homogenization theory es_ES
dc.subject Mass densities es_ES
dc.subject Mie resonance es_ES
dc.subject Numerical example es_ES
dc.subject Scattering formulations es_ES
dc.subject Scattering interactions es_ES
dc.subject Surface field es_ES
dc.subject Behavioral research es_ES
dc.subject Electromagnetic wave propagation es_ES
dc.subject Electromagnetic waves es_ES
dc.subject Electromagnetism es_ES
dc.subject Frequency response es_ES
dc.subject Metamaterials es_ES
dc.subject Multiple scattering es_ES
dc.subject Refractive index es_ES
dc.subject Two dimensional es_ES
dc.subject Acoustic wave scattering es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1367-2630/13/9/093018
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics. 13(9):93018-93018. https://doi.org/10.1088/1367-2630/13/9/093018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/1367-2630/13/9/093018 es_ES
dc.description.upvformatpinicio 93018 es_ES
dc.description.upvformatpfin 93018 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 205185
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Office of Naval Research es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734 es_ES
dc.description.references Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 es_ES
dc.description.references Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301 es_ES
dc.description.references Ambati, M., Fang, N., Sun, C., & Zhang, X. (2007). Surface resonant states and superlensing in acoustic metamaterials. Physical Review B, 75(19). doi:10.1103/physrevb.75.195447 es_ES
dc.description.references Deng, K., Ding, Y., He, Z., Zhao, H., Shi, J., & Liu, Z. (2009). Theoretical study of subwavelength imaging by acoustic metamaterial slabs. Journal of Applied Physics, 105(12), 124909. doi:10.1063/1.3153976 es_ES
dc.description.references Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., & Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 96(4), 041906. doi:10.1063/1.3299007 es_ES
dc.description.references Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5). doi:10.1103/physreve.70.055602 es_ES
dc.description.references Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134 es_ES
dc.description.references Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301 es_ES
dc.description.references Veselago, V. G. (1968). THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ. Soviet Physics Uspekhi, 10(4), 509-514. doi:10.1070/pu1968v010n04abeh003699 es_ES
dc.description.references Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 es_ES
dc.description.references Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796 es_ES
dc.description.references Shalaev, V. M. (2007). Optical negative-index metamaterials. Nature Photonics, 1(1), 41-48. doi:10.1038/nphoton.2006.49 es_ES
dc.description.references Jacob, Z., Alekseyev, L. V., & Narimanov, E. (2006). Optical Hyperlens: Far-field imaging beyond the diffraction limit. Optics Express, 14(18), 8247. doi:10.1364/oe.14.008247 es_ES
dc.description.references Zhang, X., & Liu, Z. (2008). Superlenses to overcome the diffraction limit. Nature Materials, 7(6), 435-441. doi:10.1038/nmat2141 es_ES
dc.description.references Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 es_ES
dc.description.references Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 es_ES
dc.description.references Cummer, S. A., Rahm, M., & Schurig, D. (2008). Material parameters and vector scaling in transformation acoustics. New Journal of Physics, 10(11), 115025. doi:10.1088/1367-2630/10/11/115025 es_ES
dc.description.references Chen, H., & Chan, C. T. (2010). Acoustic cloaking and transformation acoustics. Journal of Physics D: Applied Physics, 43(11), 113001. doi:10.1088/0022-3727/43/11/113001 es_ES
dc.description.references Bin, L., & Ji-Ping, H. (2010). Noise Shielding Using Acoustic Metamaterials. Communications in Theoretical Physics, 53(3), 560-564. doi:10.1088/0253-6102/53/3/30 es_ES
dc.description.references Yang, T., Cao, R. F., Luo, X. D., & Ma, H. R. (2010). Acoustic superscatterer and its multilayer realization. Applied Physics A, 99(4), 843-847. doi:10.1007/s00339-010-5609-0 es_ES
dc.description.references Liu, Z., Chan, C. T., & Sheng, P. (2005). Analytic model of phononic crystals with local resonances. Physical Review B, 71(1). doi:10.1103/physrevb.71.014103 es_ES
dc.description.references Ding, Y., Liu, Z., Qiu, C., & Shi, J. (2007). Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 99(9). doi:10.1103/physrevlett.99.093904 es_ES
dc.description.references Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601 es_ES
dc.description.references Wang, Z. G., Lee, S. H., Kim, C. K., Park, C. M., Nahm, K., & Nikitov, S. A. (2008). Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. Journal of Applied Physics, 103(6), 064907. doi:10.1063/1.2894914 es_ES
dc.description.references Hu, X., Ho, K.-M., Chan, C. T., & Zi, J. (2008). Homogenization of acoustic metamaterials of Helmholtz resonators in fluid. Physical Review B, 77(17). doi:10.1103/physrevb.77.172301 es_ES
dc.description.references Wu, Y., Li, J., Zhang, Z.-Q., & Chan, C. T. (2006). Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit. Physical Review B, 74(8). doi:10.1103/physrevb.74.085111 es_ES
dc.description.references Peng, L., Ran, L., Chen, H., Zhang, H., Kong, J. A., & Grzegorczyk, T. M. (2007). Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators. Physical Review Letters, 98(15). doi:10.1103/physrevlett.98.157403 es_ES
dc.description.references Schuller, J. A., Zia, R., Taubner, T., & Brongersma, M. L. (2007). Dielectric Metamaterials Based on Electric and Magnetic Resonances of Silicon Carbide Particles. Physical Review Letters, 99(10). doi:10.1103/physrevlett.99.107401 es_ES
dc.description.references Vynck, K., Felbacq, D., Centeno, E., Căbuz, A. I., Cassagne, D., & Guizal, B. (2009). All-Dielectric Rod-Type Metamaterials at Optical Frequencies. Physical Review Letters, 102(13). doi:10.1103/physrevlett.102.133901 es_ES
dc.description.references Chern, R.-L., & Liu, X.-X. (2010). Effective parameters and quasi-static resonances for periodic arrays of dielectric spheres. Journal of the Optical Society of America B, 27(3), 488. doi:10.1364/josab.27.000488 es_ES
dc.description.references Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084. doi:10.1109/22.798002 es_ES
dc.description.references Sarychev, A. K., McPhedran, R. C., & Shalaev, V. M. (2000). Electrodynamics of metal-dielectric composites and electromagnetic crystals. Physical Review B, 62(12), 8531-8539. doi:10.1103/physrevb.62.8531 es_ES
dc.description.references Hu, X., Chan, C. T., Zi, J., Li, M., & Ho, K.-M. (2006). Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies. Physical Review Letters, 96(22). doi:10.1103/physrevlett.96.223901 es_ES
dc.description.references Wu, Y., Lai, Y., & Zhang, Z.-Q. (2007). Effective medium theory for elastic metamaterials in two dimensions. Physical Review B, 76(20). doi:10.1103/physrevb.76.205313 es_ES
dc.description.references Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2006). Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Physical Review B, 74(22). doi:10.1103/physrevb.74.224305 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2008). Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 10(2), 023004. doi:10.1088/1367-2630/10/2/023004 es_ES
dc.description.references Berryman, J. G. (1980). Long‐wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 68(6), 1809-1819. doi:10.1121/1.385171 es_ES
dc.description.references O’Brien, S., & Pendry, J. B. (2002). Photonic band-gap effects and magnetic activity in dielectric composites. Journal of Physics: Condensed Matter, 14(15), 4035-4044. doi:10.1088/0953-8984/14/15/317 es_ES
dc.description.references Krokhin, A. A., & Reyes, E. (2004). Homogenization of Magnetodielectric Photonic Crystals. Physical Review Letters, 93(2). doi:10.1103/physrevlett.93.023904 es_ES
dc.description.references Felbacq, D., & Bouchitté, G. (2005). Theory of Mesoscopic Magnetism in Photonic Crystals. Physical Review Letters, 94(18). doi:10.1103/physrevlett.94.183902 es_ES
dc.description.references Reyes, E., Krokhin, A. A., & Roberts, J. (2005). Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes. Physical Review B, 72(15). doi:10.1103/physrevb.72.155118 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 es_ES
dc.description.references Spiousas, I., Torrent, D., & Sánchez-Dehesa, J. (2011). Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters, 98(24), 244102. doi:10.1063/1.3599849 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2007). Acoustic metamaterials for new two-dimensional sonic devices. New Journal of Physics, 9(9), 323-323. doi:10.1088/1367-2630/9/9/323 es_ES
dc.description.references Pendry, J. B., & Li, J. (2008). An acoustic metafluid: realizing a broadband acoustic cloak. New Journal of Physics, 10(11), 115032. doi:10.1088/1367-2630/10/11/115032 es_ES
dc.description.references Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem