Mostrar el registro sencillo del ítem
dc.contributor.author | Torrent Martí, Daniel | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2013-04-29T08:59:24Z | |
dc.date.available | 2013-04-29T08:59:24Z | |
dc.date.issued | 2011-09-09 | |
dc.identifier.issn | 1367-2630 | |
dc.identifier.uri | http://hdl.handle.net/10251/28289 | |
dc.description.abstract | A multiple scattering formulation of two-dimensional (2D) acoustic metamaterials is presented. This approach is comprehensive and can lead to frequency-dependent effective parameters (scalar bulk modulus and tensorial mass density), as it is possible to have not only positive or negative ellipsoidal refractive index, but also positive or negative hyperbolic refractive index. The correction due to multiple scattering interactions is included in the theory and it is demonstrated that its contribution is important only for lattices with high filling fractions. Since the surface fields on the scatterers are mainly responsible for the anomalous behavior of the resulting effective medium, complex scatterers can be used to engineer the frequency response. Anisotropic effects are also discussed within this formulation and some numerical examples are reported. A homogenization theory is also extended to electromagnetic wave propagation in 2D lattices of dielectric structures, where Mie resonances are found to be responsible for the metamaterial behavior. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. | es_ES |
dc.description.sponsorship | This work was partially supported by the US Office of Naval Research under grant number N000140910554 and the Spanish Ministry of Science and Innovation under contract numbers TEC2010-19751 and CSD2008-66 (the CONSOLIDER program). Daniel Torrent also acknowledges support from the contract provided by the program 'Campus de Excelencia Internacional' 2010 UPV. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Open Access Journals | es_ES |
dc.relation | "Campus de Excelencia Internacional" 2010 UPV. | es_ES |
dc.relation.ispartof | New Journal of Physics | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | 2D lattice | es_ES |
dc.subject | Anisotropic effects | es_ES |
dc.subject | Anomalous behavior | es_ES |
dc.subject | Dielectric structure | es_ES |
dc.subject | Effective medium | es_ES |
dc.subject | Effective parameters | es_ES |
dc.subject | Filling fractions | es_ES |
dc.subject | Frequency-dependent | es_ES |
dc.subject | Homogenization theory | es_ES |
dc.subject | Mass densities | es_ES |
dc.subject | Mie resonance | es_ES |
dc.subject | Numerical example | es_ES |
dc.subject | Scattering formulations | es_ES |
dc.subject | Scattering interactions | es_ES |
dc.subject | Surface field | es_ES |
dc.subject | Behavioral research | es_ES |
dc.subject | Electromagnetic wave propagation | es_ES |
dc.subject | Electromagnetic waves | es_ES |
dc.subject | Electromagnetism | es_ES |
dc.subject | Frequency response | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Multiple scattering | es_ES |
dc.subject | Refractive index | es_ES |
dc.subject | Two dimensional | es_ES |
dc.subject | Acoustic wave scattering | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1367-2630/13/9/093018 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Torrent Martí, D.; Sánchez-Dehesa Moreno-Cid, J. (2011). Multiple scattering formulation of two-dimensional acoustic and electromagnetic metamaterials. New Journal of Physics. 13(9):93018-93018. https://doi.org/10.1088/1367-2630/13/9/093018 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/1367-2630/13/9/093018 | es_ES |
dc.description.upvformatpinicio | 93018 | es_ES |
dc.description.upvformatpfin | 93018 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 205185 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Liu, Z. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734 | es_ES |
dc.description.references | Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644 | es_ES |
dc.description.references | Yang, Z., Mei, J., Yang, M., Chan, N. H., & Sheng, P. (2008). Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.204301 | es_ES |
dc.description.references | Ambati, M., Fang, N., Sun, C., & Zhang, X. (2007). Surface resonant states and superlensing in acoustic metamaterials. Physical Review B, 75(19). doi:10.1103/physrevb.75.195447 | es_ES |
dc.description.references | Deng, K., Ding, Y., He, Z., Zhao, H., Shi, J., & Liu, Z. (2009). Theoretical study of subwavelength imaging by acoustic metamaterial slabs. Journal of Applied Physics, 105(12), 124909. doi:10.1063/1.3153976 | es_ES |
dc.description.references | Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., & Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 96(4), 041906. doi:10.1063/1.3299007 | es_ES |
dc.description.references | Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5). doi:10.1103/physreve.70.055602 | es_ES |
dc.description.references | Cheng, Y., Xu, J. Y., & Liu, X. J. (2008). One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 77(4). doi:10.1103/physrevb.77.045134 | es_ES |
dc.description.references | Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K. (2010). Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104(5). doi:10.1103/physrevlett.104.054301 | es_ES |
dc.description.references | Veselago, V. G. (1968). THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ. Soviet Physics Uspekhi, 10(4), 509-514. doi:10.1070/pu1968v010n04abeh003699 | es_ES |
dc.description.references | Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 | es_ES |
dc.description.references | Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796 | es_ES |
dc.description.references | Shalaev, V. M. (2007). Optical negative-index metamaterials. Nature Photonics, 1(1), 41-48. doi:10.1038/nphoton.2006.49 | es_ES |
dc.description.references | Jacob, Z., Alekseyev, L. V., & Narimanov, E. (2006). Optical Hyperlens: Far-field imaging beyond the diffraction limit. Optics Express, 14(18), 8247. doi:10.1364/oe.14.008247 | es_ES |
dc.description.references | Zhang, X., & Liu, Z. (2008). Superlenses to overcome the diffraction limit. Nature Materials, 7(6), 435-441. doi:10.1038/nmat2141 | es_ES |
dc.description.references | Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 | es_ES |
dc.description.references | Cummer, S. A., & Schurig, D. (2007). One path to acoustic cloaking. New Journal of Physics, 9(3), 45-45. doi:10.1088/1367-2630/9/3/045 | es_ES |
dc.description.references | Cummer, S. A., Rahm, M., & Schurig, D. (2008). Material parameters and vector scaling in transformation acoustics. New Journal of Physics, 10(11), 115025. doi:10.1088/1367-2630/10/11/115025 | es_ES |
dc.description.references | Chen, H., & Chan, C. T. (2010). Acoustic cloaking and transformation acoustics. Journal of Physics D: Applied Physics, 43(11), 113001. doi:10.1088/0022-3727/43/11/113001 | es_ES |
dc.description.references | Bin, L., & Ji-Ping, H. (2010). Noise Shielding Using Acoustic Metamaterials. Communications in Theoretical Physics, 53(3), 560-564. doi:10.1088/0253-6102/53/3/30 | es_ES |
dc.description.references | Yang, T., Cao, R. F., Luo, X. D., & Ma, H. R. (2010). Acoustic superscatterer and its multilayer realization. Applied Physics A, 99(4), 843-847. doi:10.1007/s00339-010-5609-0 | es_ES |
dc.description.references | Liu, Z., Chan, C. T., & Sheng, P. (2005). Analytic model of phononic crystals with local resonances. Physical Review B, 71(1). doi:10.1103/physrevb.71.014103 | es_ES |
dc.description.references | Ding, Y., Liu, Z., Qiu, C., & Shi, J. (2007). Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 99(9). doi:10.1103/physrevlett.99.093904 | es_ES |
dc.description.references | Hu, X., Chan, C. T., & Zi, J. (2005). Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 71(5). doi:10.1103/physreve.71.055601 | es_ES |
dc.description.references | Wang, Z. G., Lee, S. H., Kim, C. K., Park, C. M., Nahm, K., & Nikitov, S. A. (2008). Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. Journal of Applied Physics, 103(6), 064907. doi:10.1063/1.2894914 | es_ES |
dc.description.references | Hu, X., Ho, K.-M., Chan, C. T., & Zi, J. (2008). Homogenization of acoustic metamaterials of Helmholtz resonators in fluid. Physical Review B, 77(17). doi:10.1103/physrevb.77.172301 | es_ES |
dc.description.references | Wu, Y., Li, J., Zhang, Z.-Q., & Chan, C. T. (2006). Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit. Physical Review B, 74(8). doi:10.1103/physrevb.74.085111 | es_ES |
dc.description.references | Peng, L., Ran, L., Chen, H., Zhang, H., Kong, J. A., & Grzegorczyk, T. M. (2007). Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators. Physical Review Letters, 98(15). doi:10.1103/physrevlett.98.157403 | es_ES |
dc.description.references | Schuller, J. A., Zia, R., Taubner, T., & Brongersma, M. L. (2007). Dielectric Metamaterials Based on Electric and Magnetic Resonances of Silicon Carbide Particles. Physical Review Letters, 99(10). doi:10.1103/physrevlett.99.107401 | es_ES |
dc.description.references | Vynck, K., Felbacq, D., Centeno, E., Căbuz, A. I., Cassagne, D., & Guizal, B. (2009). All-Dielectric Rod-Type Metamaterials at Optical Frequencies. Physical Review Letters, 102(13). doi:10.1103/physrevlett.102.133901 | es_ES |
dc.description.references | Chern, R.-L., & Liu, X.-X. (2010). Effective parameters and quasi-static resonances for periodic arrays of dielectric spheres. Journal of the Optical Society of America B, 27(3), 488. doi:10.1364/josab.27.000488 | es_ES |
dc.description.references | Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084. doi:10.1109/22.798002 | es_ES |
dc.description.references | Sarychev, A. K., McPhedran, R. C., & Shalaev, V. M. (2000). Electrodynamics of metal-dielectric composites and electromagnetic crystals. Physical Review B, 62(12), 8531-8539. doi:10.1103/physrevb.62.8531 | es_ES |
dc.description.references | Hu, X., Chan, C. T., Zi, J., Li, M., & Ho, K.-M. (2006). Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies. Physical Review Letters, 96(22). doi:10.1103/physrevlett.96.223901 | es_ES |
dc.description.references | Wu, Y., Lai, Y., & Zhang, Z.-Q. (2007). Effective medium theory for elastic metamaterials in two dimensions. Physical Review B, 76(20). doi:10.1103/physrevb.76.205313 | es_ES |
dc.description.references | Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2006). Effective parameters of clusters of cylinders embedded in a nonviscous fluid or gas. Physical Review B, 74(22). doi:10.1103/physrevb.74.224305 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2008). Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 10(2), 023004. doi:10.1088/1367-2630/10/2/023004 | es_ES |
dc.description.references | Berryman, J. G. (1980). Long‐wavelength propagation in composite elastic media I. Spherical inclusions. The Journal of the Acoustical Society of America, 68(6), 1809-1819. doi:10.1121/1.385171 | es_ES |
dc.description.references | O’Brien, S., & Pendry, J. B. (2002). Photonic band-gap effects and magnetic activity in dielectric composites. Journal of Physics: Condensed Matter, 14(15), 4035-4044. doi:10.1088/0953-8984/14/15/317 | es_ES |
dc.description.references | Krokhin, A. A., & Reyes, E. (2004). Homogenization of Magnetodielectric Photonic Crystals. Physical Review Letters, 93(2). doi:10.1103/physrevlett.93.023904 | es_ES |
dc.description.references | Felbacq, D., & Bouchitté, G. (2005). Theory of Mesoscopic Magnetism in Photonic Crystals. Physical Review Letters, 94(18). doi:10.1103/physrevlett.94.183902 | es_ES |
dc.description.references | Reyes, E., Krokhin, A. A., & Roberts, J. (2005). Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes. Physical Review B, 72(15). doi:10.1103/physrevb.72.155118 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 | es_ES |
dc.description.references | Spiousas, I., Torrent, D., & Sánchez-Dehesa, J. (2011). Experimental realization of broadband tunable resonators based on anisotropic metafluids. Applied Physics Letters, 98(24), 244102. doi:10.1063/1.3599849 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2007). Acoustic metamaterials for new two-dimensional sonic devices. New Journal of Physics, 9(9), 323-323. doi:10.1088/1367-2630/9/9/323 | es_ES |
dc.description.references | Pendry, J. B., & Li, J. (2008). An acoustic metafluid: realizing a broadband acoustic cloak. New Journal of Physics, 10(11), 115032. doi:10.1088/1367-2630/10/11/115032 | es_ES |
dc.description.references | Norris, A. N. (2009). Acoustic metafluids. The Journal of the Acoustical Society of America, 125(2), 839-849. doi:10.1121/1.3050288 | es_ES |