- -

Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations

Show full item record

Cantó Colomina, B.; Coll, C.; Sánchez, E. (2011). Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations. Mathematical Problems in Engineering. 1-12. https://doi.org/10.1155/2011/510519

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28322

Files in this item

Item Metadata

Title: Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations
Author: Cantó Colomina, Begoña Coll, Carmen Sánchez, Elena
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Issued date:
Abstract:
This paper presents the use of an iteration method to solve the identifiability problem for a class of discretized linear partial differential algebraic equations. This technique consists in replacing the partial derivatives ...[+]
Subjects: Algebraic equations , Discrete singular system , Drazin inverse , Identifiability , Iteration method , Mathematical physics , Partial derivatives , Partial differential-algebraic equations , Differential equations , Inverse problems , Algebra
Copyrigths: Reconocimiento (by)
Source:
Mathematical Problems in Engineering. (issn: 1024-123X )
DOI: 10.1155/2011/510519
Publisher:
Hindawi Publishing Corporation
Publisher version: http://dx.doi.org/10.1155/2011/510519
Project ID:
PAID-05-10-003-295
info:eu-repo/grantAgreement/MICINN//MTM2010-18228/ES/PROPIEDADES MATRICIALES CON APLICACION A LA TEORIA DE CONTROL/
Thanks:
The authors are very grateful to the referees for their comments and suggestions. The paper is supported by Grant PAID-05-10-003-295 and Grant MTM2010-18228.
Type: Artículo

References

LUCHT, W. (2002). On quasi-linear PDAEs with convection: Applications, indices, numerical solution. Applied Numerical Mathematics, 42(1-3), 297-314. doi:10.1016/s0168-9274(01)00157-x

Debrabant, K., & Strehmel, K. (2005). Convergence of Runge–Kutta methods applied to linear partial differential-algebraic equations. Applied Numerical Mathematics, 53(2-4), 213-229. doi:10.1016/j.apnum.2004.08.023

Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2003). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. I. The Generalized Markov Parameter Approach. Industrial & Engineering Chemistry Research, 42(25), 6607-6618. doi:10.1021/ie030317i [+]
LUCHT, W. (2002). On quasi-linear PDAEs with convection: Applications, indices, numerical solution. Applied Numerical Mathematics, 42(1-3), 297-314. doi:10.1016/s0168-9274(01)00157-x

Debrabant, K., & Strehmel, K. (2005). Convergence of Runge–Kutta methods applied to linear partial differential-algebraic equations. Applied Numerical Mathematics, 53(2-4), 213-229. doi:10.1016/j.apnum.2004.08.023

Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2003). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. I. The Generalized Markov Parameter Approach. Industrial & Engineering Chemistry Research, 42(25), 6607-6618. doi:10.1021/ie030317i

Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2004). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. 2. The Differential-Algebraic Approach. Industrial & Engineering Chemistry Research, 43(5), 1251-1259. doi:10.1021/ie030534j

Schittkowski, K. (2007). Parameter Identification in One-Dimensional Partial Differential Algebraic Equations. GAMM-Mitteilungen, 30(2), 352-375. doi:10.1002/gamm.200790023

Dai, L. (Ed.). (1989). Singular Control Systems. Lecture Notes in Control and Information Sciences. doi:10.1007/bfb0002475

Boyadjiev, C., & Dimitrova, E. (2005). An iterative method for model parameter identification. Computers & Chemical Engineering, 29(5), 941-948. doi:10.1016/j.compchemeng.2004.08.036

Dion, J.-M., Commault, C., & van der Woude, J. (2003). Generic properties and control of linear structured systems: a survey. Automatica, 39(7), 1125-1144. doi:10.1016/s0005-1098(03)00104-3

Usmani, R. A. (1994). Inversion of a tridiagonal jacobi matrix. Linear Algebra and its Applications, 212-213, 413-414. doi:10.1016/0024-3795(94)90414-6

Lewis, J. W. (1982). Inversion of tridiagonal matrices. Numerische Mathematik, 38(3), 333-345. doi:10.1007/bf01396436

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record