Mostrar el registro sencillo del ítem
dc.contributor.author | Cantó Colomina, Begoña | es_ES |
dc.contributor.author | Coll, Carmen | es_ES |
dc.contributor.author | Sánchez, Elena | es_ES |
dc.date.accessioned | 2013-04-29T14:13:47Z | |
dc.date.available | 2013-04-29T14:13:47Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1024-123X | |
dc.identifier.uri | http://hdl.handle.net/10251/28322 | |
dc.description.abstract | This paper presents the use of an iteration method to solve the identifiability problem for a class of discretized linear partial differential algebraic equations. This technique consists in replacing the partial derivatives in the PDAE by differences and analyzing the difference algebraic equations obtained. For that, the theory of discrete singular systems, which involves Drazin inverse matrix, is used. This technique can also be applied to other differential equations in mathematical physics. © 2011 Begoa Cant et al. | es_ES |
dc.description.sponsorship | The authors are very grateful to the referees for their comments and suggestions. The paper is supported by Grant PAID-05-10-003-295 and Grant MTM2010-18228. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Mathematical Problems in Engineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Algebraic equations | es_ES |
dc.subject | Discrete singular system | es_ES |
dc.subject | Drazin inverse | es_ES |
dc.subject | Identifiability | es_ES |
dc.subject | Iteration method | es_ES |
dc.subject | Mathematical physics | es_ES |
dc.subject | Partial derivatives | es_ES |
dc.subject | Partial differential-algebraic equations | es_ES |
dc.subject | Differential equations | es_ES |
dc.subject | Inverse problems | es_ES |
dc.subject | Algebra | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2011/510519 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-10-003-295/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18228/ES/PROPIEDADES MATRICIALES CON APLICACION A LA TEORIA DE CONTROL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Cantó Colomina, B.; Coll, C.; Sánchez, E. (2011). Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations. Mathematical Problems in Engineering. 1-12. https://doi.org/10.1155/2011/510519 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2011/510519 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 193789 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | LUCHT, W. (2002). On quasi-linear PDAEs with convection: Applications, indices, numerical solution. Applied Numerical Mathematics, 42(1-3), 297-314. doi:10.1016/s0168-9274(01)00157-x | es_ES |
dc.description.references | Debrabant, K., & Strehmel, K. (2005). Convergence of Runge–Kutta methods applied to linear partial differential-algebraic equations. Applied Numerical Mathematics, 53(2-4), 213-229. doi:10.1016/j.apnum.2004.08.023 | es_ES |
dc.description.references | Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2003). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. I. The Generalized Markov Parameter Approach. Industrial & Engineering Chemistry Research, 42(25), 6607-6618. doi:10.1021/ie030317i | es_ES |
dc.description.references | Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2004). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. 2. The Differential-Algebraic Approach. Industrial & Engineering Chemistry Research, 43(5), 1251-1259. doi:10.1021/ie030534j | es_ES |
dc.description.references | Schittkowski, K. (2007). Parameter Identification in One-Dimensional Partial Differential Algebraic Equations. GAMM-Mitteilungen, 30(2), 352-375. doi:10.1002/gamm.200790023 | es_ES |
dc.description.references | Dai, L. (Ed.). (1989). Singular Control Systems. Lecture Notes in Control and Information Sciences. doi:10.1007/bfb0002475 | es_ES |
dc.description.references | Boyadjiev, C., & Dimitrova, E. (2005). An iterative method for model parameter identification. Computers & Chemical Engineering, 29(5), 941-948. doi:10.1016/j.compchemeng.2004.08.036 | es_ES |
dc.description.references | Dion, J.-M., Commault, C., & van der Woude, J. (2003). Generic properties and control of linear structured systems: a survey. Automatica, 39(7), 1125-1144. doi:10.1016/s0005-1098(03)00104-3 | es_ES |
dc.description.references | Usmani, R. A. (1994). Inversion of a tridiagonal jacobi matrix. Linear Algebra and its Applications, 212-213, 413-414. doi:10.1016/0024-3795(94)90414-6 | es_ES |
dc.description.references | Lewis, J. W. (1982). Inversion of tridiagonal matrices. Numerische Mathematik, 38(3), 333-345. doi:10.1007/bf01396436 | es_ES |