- -

Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cantó Colomina, Begoña es_ES
dc.contributor.author Coll, Carmen es_ES
dc.contributor.author Sánchez, Elena es_ES
dc.date.accessioned 2013-04-29T14:13:47Z
dc.date.available 2013-04-29T14:13:47Z
dc.date.issued 2011
dc.identifier.issn 1024-123X
dc.identifier.uri http://hdl.handle.net/10251/28322
dc.description.abstract This paper presents the use of an iteration method to solve the identifiability problem for a class of discretized linear partial differential algebraic equations. This technique consists in replacing the partial derivatives in the PDAE by differences and analyzing the difference algebraic equations obtained. For that, the theory of discrete singular systems, which involves Drazin inverse matrix, is used. This technique can also be applied to other differential equations in mathematical physics. © 2011 Begoa Cant et al. es_ES
dc.description.sponsorship The authors are very grateful to the referees for their comments and suggestions. The paper is supported by Grant PAID-05-10-003-295 and Grant MTM2010-18228. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Mathematical Problems in Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Algebraic equations es_ES
dc.subject Discrete singular system es_ES
dc.subject Drazin inverse es_ES
dc.subject Identifiability es_ES
dc.subject Iteration method es_ES
dc.subject Mathematical physics es_ES
dc.subject Partial derivatives es_ES
dc.subject Partial differential-algebraic equations es_ES
dc.subject Differential equations es_ES
dc.subject Inverse problems es_ES
dc.subject Algebra es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2011/510519
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-10-003-295/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18228/ES/PROPIEDADES MATRICIALES CON APLICACION A LA TEORIA DE CONTROL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Cantó Colomina, B.; Coll, C.; Sánchez, E. (2011). Identifiability for a Class of Discretized Linear Partial Differential Algebraic Equations. Mathematical Problems in Engineering. 1-12. https://doi.org/10.1155/2011/510519 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2011/510519 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 193789
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references LUCHT, W. (2002). On quasi-linear PDAEs with convection: Applications, indices, numerical solution. Applied Numerical Mathematics, 42(1-3), 297-314. doi:10.1016/s0168-9274(01)00157-x es_ES
dc.description.references Debrabant, K., & Strehmel, K. (2005). Convergence of Runge–Kutta methods applied to linear partial differential-algebraic equations. Applied Numerical Mathematics, 53(2-4), 213-229. doi:10.1016/j.apnum.2004.08.023 es_ES
dc.description.references Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2003). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. I. The Generalized Markov Parameter Approach. Industrial & Engineering Chemistry Research, 42(25), 6607-6618. doi:10.1021/ie030317i es_ES
dc.description.references Ben-Zvi, A., McLellan, P. J., & McAuley, K. B. (2004). Identifiability of Linear Time-Invariant Differential-Algebraic Systems. 2. The Differential-Algebraic Approach. Industrial & Engineering Chemistry Research, 43(5), 1251-1259. doi:10.1021/ie030534j es_ES
dc.description.references Schittkowski, K. (2007). Parameter Identification in One-Dimensional Partial Differential Algebraic Equations. GAMM-Mitteilungen, 30(2), 352-375. doi:10.1002/gamm.200790023 es_ES
dc.description.references Dai, L. (Ed.). (1989). Singular Control Systems. Lecture Notes in Control and Information Sciences. doi:10.1007/bfb0002475 es_ES
dc.description.references Boyadjiev, C., & Dimitrova, E. (2005). An iterative method for model parameter identification. Computers & Chemical Engineering, 29(5), 941-948. doi:10.1016/j.compchemeng.2004.08.036 es_ES
dc.description.references Dion, J.-M., Commault, C., & van der Woude, J. (2003). Generic properties and control of linear structured systems: a survey. Automatica, 39(7), 1125-1144. doi:10.1016/s0005-1098(03)00104-3 es_ES
dc.description.references Usmani, R. A. (1994). Inversion of a tridiagonal jacobi matrix. Linear Algebra and its Applications, 212-213, 413-414. doi:10.1016/0024-3795(94)90414-6 es_ES
dc.description.references Lewis, J. W. (1982). Inversion of tridiagonal matrices. Numerische Mathematik, 38(3), 333-345. doi:10.1007/bf01396436 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem