Gallie, D. R. (1996). Translational control of cellular and viral mRNAs. Plant Molecular Biology, 32(1-2), 145-158. doi:10.1007/bf00039381
Kozak, M. (2002). Pushing the limits of the scanning mechanism for initiation of translation. Gene, 299(1-2), 1-34. doi:10.1016/s0378-1119(02)01056-9
Sachs, A. B., Sarnow, P., & Hentze, M. W. (1997). Starting at the Beginning, Middle, and End: Translation Initiation in Eukaryotes. Cell, 89(6), 831-838. doi:10.1016/s0092-8674(00)80268-8
[+]
Gallie, D. R. (1996). Translational control of cellular and viral mRNAs. Plant Molecular Biology, 32(1-2), 145-158. doi:10.1007/bf00039381
Kozak, M. (2002). Pushing the limits of the scanning mechanism for initiation of translation. Gene, 299(1-2), 1-34. doi:10.1016/s0378-1119(02)01056-9
Sachs, A. B., Sarnow, P., & Hentze, M. W. (1997). Starting at the Beginning, Middle, and End: Translation Initiation in Eukaryotes. Cell, 89(6), 831-838. doi:10.1016/s0092-8674(00)80268-8
Kozak, M. (1992). Regulation of Translation in Eukaryotic Systems. Annual Review of Cell Biology, 8(1), 197-225. doi:10.1146/annurev.cb.08.110192.001213
Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042
F�tterer, J., & Hohn, T. (1996). Translation in plants-rules and exceptions. Plant Molecular Biology, 32(1-2), 159-189. doi:10.1007/bf00039382
Gale, M., Tan, S.-L., & Katze, M. G. (2000). Translational Control of Viral Gene Expression in Eukaryotes. Microbiology and Molecular Biology Reviews, 64(2), 239-280. doi:10.1128/mmbr.64.2.239-280.2000
Kozak, M. (2001). Constraints on reinitiation of translation in mammals. Nucleic Acids Research, 29(24), 5226-5232. doi:10.1093/nar/29.24.5226
Pelletier, J., & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334(6180), 320-325. doi:10.1038/334320a0
Mokrejš, M., Mašek, T., Vopálenský, V., Hlubuček, P., Delbos, P., & Pospíšek, M. (2009). IRESite—a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Research, 38(suppl_1), D131-D136. doi:10.1093/nar/gkp981
Basso, J., Dallaire, P., Charest, P. J., Devantier, Y., & Laliberte, J.-F. (1994). Evidence for an Internal Ribosome Entry Site Within the 5’ Non-translated Region of Turnip Mosaic Potyvirus RNA. Journal of General Virology, 75(11), 3157-3165. doi:10.1099/0022-1317-75-11-3157
Levis, C., & Astier-Manifacier, S. (1993). The 5′ untranslated region of PVY RNA, even located in an internal position, enables initiation of translation. Virus Genes, 7(4), 367-379. doi:10.1007/bf01703392
Karetnikov, A., & Lehto, K. (2007). The RNA2 5’ leader of Blackcurrant reversion virus mediates efficient in vivo translation through an internal ribosomal entry site mechanism. Journal of General Virology, 88(1), 286-297. doi:10.1099/vir.0.82307-0
Ivanov, P. A., Karpova, O. V., Skulachev, M. V., Tomashevskaya, O. L., Rodionova, N. P., Dorokhov, Y. L., & Atabekov, J. G. (1997). A Tobamovirus Genome That Contains an Internal Ribosome Entry Site Functionalin Vitro. Virology, 232(1), 32-43. doi:10.1006/viro.1997.8525
Skulachev, M. V., Ivanov, P. A., Karpova, O. V., Korpela, T., Rodionova, N. P., Dorokhov, Y. L., & Atabekov, J. G. (1999). Internal Initiation of Translation Directed by the 5′-Untranslated Region of the Tobamovirus Subgenomic RNA I2. Virology, 263(1), 139-154. doi:10.1006/viro.1999.9928
Jaag, H. M., Kawchuk, L., Rohde, W., Fischer, R., Emans, N., & Prufer, D. (2003). An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein. Proceedings of the National Academy of Sciences, 100(15), 8939-8944. doi:10.1073/pnas.1332697100
Balvay, L., Rifo, R. S., Ricci, E. P., Decimo, D., & Ohlmann, T. (2009). Structural and functional diversity of viral IRESes. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1789(9-10), 542-557. doi:10.1016/j.bbagrm.2009.07.005
Kneller, E. L. P., Rakotondrafara, A. M., & Miller, W. A. (2006). Cap-independent translation of plant viral RNAs. Virus Research, 119(1), 63-75. doi:10.1016/j.virusres.2005.10.010
Rico, P., & Hern�ndez, C. (2004). Complete nucleotide sequence and genome organization of Pelargonium flower break virus. Archives of Virology, 149(3), 641-651. doi:10.1007/s00705-003-0231-5
Martinez-Turino, S., & Hernandez, C. (2010). Identification and characterization of RNA-binding activity in the ORF1-encoded replicase protein of Pelargonium flower break virus. Journal of General Virology, 91(12), 3075-3084. doi:10.1099/vir.0.023093-0
Martínez-Turiño, S., & Hernández, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001
Martinez-Turino, S., & Hernandez, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0
Rico, P., & Hernández, C. (2009). Characterization of the subgenomic RNAs produced by Pelargonium flower break virus: Identification of two novel RNAs species. Virus Research, 142(1-2), 100-107. doi:10.1016/j.virusres.2009.01.018
Koh, D. C.-Y., Wong, S.-M., & Liu, D. X. (2003). Synergism of the 3′-Untranslated Region and an Internal Ribosome Entry Site Differentially Enhances the Translation of a Plant Virus Coat Protein. Journal of Biological Chemistry, 278(23), 20565-20573. doi:10.1074/jbc.m210212200
Hellen, C. U. T. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes & Development, 15(13), 1593-1612. doi:10.1101/gad.891101
Martínez-Salas, E. (1999). Internal ribosome entry site biology and its use in expression vectors. Current Opinion in Biotechnology, 10(5), 458-464. doi:10.1016/s0958-1669(99)00010-5
Dobrikova, E., Florez, P., Bradrick, S., & Gromeier, M. (2003). Activity of a type 1 picornavirus internal ribosomal entry site is determined by sequences within the 3’ nontranslated region. Proceedings of the National Academy of Sciences, 100(25), 15125-15130. doi:10.1073/pnas.2436464100
Belsham, G. J. (2009). Divergent picornavirus IRES elements. Virus Research, 139(2), 183-192. doi:10.1016/j.virusres.2008.07.001
Fernández-Miragall, O., Quinto, S. L. de, & Martínez-Salas, E. (2009). Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Research, 139(2), 172-182. doi:10.1016/j.virusres.2008.07.009
Pestova, T. V., Kolupaeva, V. G., Lomakin, I. B., Pilipenko, E. V., Shatsky, I. N., Agol, V. I., & Hellen, C. U. T. (2001). Molecular mechanisms of translation initiation in eukaryotes. Proceedings of the National Academy of Sciences, 98(13), 7029-7036. doi:10.1073/pnas.111145798
FERNANDEZ-MIRAGALL, O. (2003). Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA, 9(11), 1333-1344. doi:10.1261/rna.5950603
ROBERTSON, M. E. M., SEAMONS, R. A., & BELSHAM, G. J. (1999). A selection system for functional internal ribosome entry site (IRES) elements: Analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA, 5(9), 1167-1179. doi:10.1017/s1355838299990301
Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., Merits, A., … Atabekov, J. G. (2002). Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proceedings of the National Academy of Sciences, 99(8), 5301-5306. doi:10.1073/pnas.082107599
Xia, X., & Holcik, M. (2009). Strong Eukaryotic IRESs Have Weak Secondary Structure. PLoS ONE, 4(1), e4136. doi:10.1371/journal.pone.0004136
Lu, J., Zhang, J., Wang, X., Jiang, H., Liu, C., & Hu, Y. (2006). In vitro and in vivo identification of structural and sequence elements in the 5’ untranslated region of Ectropis obliqua picorna-like virus required for internal initiation. Journal of General Virology, 87(12), 3667-3677. doi:10.1099/vir.0.82090-0
Yang, L. J., Hidaka, M., Sonoda, J., Masaki, H., & Uozumi, T. (1997). Mutational Analysis of the Potato Virus Y 5′ Untranslated Region for Alteration in Translational Enhancement in Tobacco Protoplasts. Bioscience, Biotechnology, and Biochemistry, 61(12), 2131-2133. doi:10.1271/bbb.61.2131
BERGAMINI, G., PREISS, T., & HENTZE, M. W. (2000). Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. RNA, 6(12), 1781-1790. doi:10.1017/s1355838200001679
Bradrick, S. S. (2006). The hepatitis C virus 3’-untranslated region or a poly(A) tract promote efficient translation subsequent to the initiation phase. Nucleic Acids Research, 34(4), 1293-1303. doi:10.1093/nar/gkl019
Lopez de Quinto, S. (2002). IRES-driven translation is stimulated separately by the FMDV 3’-NCR and poly(A) sequences. Nucleic Acids Research, 30(20), 4398-4405. doi:10.1093/nar/gkf569
Song, Y., Friebe, P., Tzima, E., Junemann, C., Bartenschlager, R., & Niepmann, M. (2006). The Hepatitis C Virus RNA 3’-Untranslated Region Strongly Enhances Translation Directed by the Internal Ribosome Entry Site. Journal of Virology, 80(23), 11579-11588. doi:10.1128/jvi.00675-06
Koh, D. C.-Y., Liu, D. X., & Wong, S.-M. (2002). A Six-Nucleotide Segment within the 3’ Untranslated Region of Hibiscus Chlorotic Ringspot Virus Plays an Essential Role in Translational Enhancement. Journal of Virology, 76(3), 1144-1153. doi:10.1128/jvi.76.3.1144-1153.2002
Stupina, V. A., Meskauskas, A., McCormack, J. C., Yingling, Y. G., Shapiro, B. A., Dinman, J. D., & Simon, A. E. (2008). The 3’ proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits. RNA, 14(11), 2379-2393. doi:10.1261/rna.1227808
Truniger, V., Nieto, C., González-Ibeas, D., & Aranda, M. (2008). Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlledin cisby an (a)virulence determinant. The Plant Journal, 56(5), 716-727. doi:10.1111/j.1365-313x.2008.03630.x
Miller, W. A., Wang, Z., & Treder, K. (2007). The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs. Biochemical Society Transactions, 35(6), 1629-1633. doi:10.1042/bst0351629
Miller, W. A., & White, K. A. (2006). Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annual Review of Phytopathology, 44(1), 447-467. doi:10.1146/annurev.phyto.44.070505.143353
Koh, D. C.-Y., Wang, X., Wong, S.-M., & Liu, D. X. (2006). Translation initiation at an upstream CUG codon regulates the expression of Hibiscus chlorotic ringspot virus coat protein. Virus Research, 122(1-2), 35-44. doi:10.1016/j.virusres.2006.06.008
Castaño, A., Ruiz, L., & Hernández, C. (2009). Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology, 386(2), 417-426. doi:10.1016/j.virol.2009.01.017
Fraser, C. S., & Doudna, J. A. (2006). Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Reviews Microbiology, 5(1), 29-38. doi:10.1038/nrmicro1558
LÓPEZ-LASTRA, M., RIVAS, A., & BARRÍA, M. I. (2005). Protein synthesis in eukaryotes: The growing biological relevance of cap-independent translation initiation. Biological Research, 38(2-3). doi:10.4067/s0716-97602005000200003
Pacheco, A., & Martinez-Salas, E. (2010). Insights into the Biology of IRES Elements through Riboproteomic Approaches. Journal of Biomedicine and Biotechnology, 2010, 1-12. doi:10.1155/2010/458927
Bernstein, J., Sella, O., Le, S.-Y., & Elroy-Stein, O. (1997). PDGF2/c-sismRNA Leader Contains a Differentiation-linked Internal Ribosomal Entry Site (D-IRES). Journal of Biological Chemistry, 272(14), 9356-9362. doi:10.1074/jbc.272.14.9356
Scheper, G. C., Voorma, H. O., & Thomas, A. A. M. (1994). Basepairing with 18S ribosomal RNA in internal initiation of translation. FEBS Letters, 352(3), 271-275. doi:10.1016/0014-5793(94)00975-9
Dresios, J., Chappell, S. A., Zhou, W., & Mauro, V. P. (2005). An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nature Structural & Molecular Biology, 13(1), 30-34. doi:10.1038/nsmb1031
Reigadas, S., Pacheco, A., Ramajo, J., de Quinto, S. L., & Martinez-Salas, E. (2005). Specific interference between two unrelated internal ribosome entry site elements impairs translation efficiency. FEBS Letters, 579(30), 6803-6808. doi:10.1016/j.febslet.2005.11.015
Ishitani, M., Xiong, L., Stevenson, B., & Zhu, J. K. (1997). Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. The Plant Cell, 9(11), 1935-1949. doi:10.1105/tpc.9.11.1935
Knoester, M., van Loon, L. C., van den Heuvel, J., Hennig, J., Bol, J. F., & Linthorst, H. J. M. (1998). Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences, 95(4), 1933-1937. doi:10.1073/pnas.95.4.1933
Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406-3415. doi:10.1093/nar/gkg595
[-]