- -

One is enough: in vivo effective population size is dose-dependent for a plant RNA virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One is enough: in vivo effective population size is dose-dependent for a plant RNA virus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zwart, Mark Peter es_ES
dc.contributor.author Daros Arnau, Jose Antonio es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2013-05-06T12:33:36Z
dc.date.available 2013-05-06T12:33:36Z
dc.date.issued 2011
dc.identifier.issn 1553-7366
dc.identifier.uri http://hdl.handle.net/10251/28579
dc.description.abstract [EN] Effective population size (N-e) determines the strength of genetic drift and the frequency of co-infection by multiple genotypes, making it a key factor in viral evolution. Experimental estimates of N-e for different plant viruses have, however, rendered diverging results. The independent action hypothesis (IAH) states that each virion has a probability of infection, and that virions act independent of one another during the infection process. A corollary of IAH is that N-e must be dose dependent. A test of IAH for a plant virus has not been reported yet. Here we perform a test of an IAH infection model using a plant RNA virus, Tobacco etch virus (TEV) variants carrying GFP or mCherry fluorescent markers, in Nicotiana tabacum and Capsicum annuum plants. The number of primary infection foci increased linearly with dose, and was similar to a Poisson distribution. At high doses, primary infection foci containing both genotypes were found at a low frequency (<2%). The probability that a genotype that infected the inoculated leaf would systemically infect that plant was near 1, although in a few rare cases genotypes could be trapped in the inoculated leaf by being physically surrounded by the other genotype. The frequency of mixed-genotype infection could be predicted from the mean number of primary infection foci using the independent-action model. Independent action appears to hold for TEV, and N-e is therefore dose-dependent for this plant RNA virus. The mean number of virions causing systemic infection can be very small, and approaches 1 at low doses. Dose-dependency in TEV suggests that comparison of N-e estimates for different viruses are not very meaningful unless dose effects are taken into consideration. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Ciencia e Innovacion grant BFU2009-06993. MPZ was supported by a Rubicon Grant from the Netherlands Organisation for Scientific Research (NWO, www.nwo.nl). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS Pathogens es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Tobacco-mosaic-virus es_ES
dc.subject Infectivity-dilution curve es_ES
dc.subject Genetic bottlenecks es_ES
dc.subject Etch-virus es_ES
dc.subject Theoretical considerations es_ES
dc.subject Mathematical model es_ES
dc.subject Mixed infections es_ES
dc.subject Transmission es_ES
dc.subject Evolution es_ES
dc.subject Fitness es_ES
dc.title One is enough: in vivo effective population size is dose-dependent for a plant RNA virus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.ppat.1002122
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Zwart, MP.; Daros Arnau, JA.; Elena Fito, SF. (2011). One is enough: in vivo effective population size is dose-dependent for a plant RNA virus. PLoS Pathogens. 7(7). https://doi.org/10.1371/journal.ppat.1002122 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.ppat.1002122 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 216047
dc.identifier.pmid 21750676 en_EN
dc.identifier.pmcid PMC3131263 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Netherlands Organization for Scientific Research es_ES
dc.description.references Nijhuis, M., Boucher, C. A. B., Schipper, P., Leitner, T., Schuurman, R., & Albert, J. (1998). Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy. Proceedings of the National Academy of Sciences, 95(24), 14441-14446. doi:10.1073/pnas.95.24.14441 es_ES
dc.description.references Moya, A., Elena, S. F., Bracho, A., Miralles, R., & Barrio, E. (2000). The evolution of RNA viruses: A population genetics view. Proceedings of the National Academy of Sciences, 97(13), 6967-6973. doi:10.1073/pnas.97.13.6967 es_ES
dc.description.references Chao, L. (1990). Fitness of RNA virus decreased by Muller’s ratchet. Nature, 348(6300), 454-455. doi:10.1038/348454a0 es_ES
dc.description.references De la Iglesia, F., & Elena, S. F. (2007). Fitness Declines in Tobacco Etch Virus upon Serial Bottleneck Transfers. Journal of Virology, 81(10), 4941-4947. doi:10.1128/jvi.02528-06 es_ES
dc.description.references Bergstrom, C. T., McElhany, P., & Real, L. A. (1999). Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens. Proceedings of the National Academy of Sciences, 96(9), 5095-5100. doi:10.1073/pnas.96.9.5095 es_ES
dc.description.references Zwart, M. P., Hemerik, L., Cory, J. S., de Visser, J. A. G. M., Bianchi, F. J. J. A., Van Oers, M. M., … Van der Werf, W. (2009). An experimental test of the independent action hypothesis in virus–insect pathosystems. Proceedings of the Royal Society B: Biological Sciences, 276(1665), 2233-2242. doi:10.1098/rspb.2009.0064 es_ES
dc.description.references Froissart, R., Roze, D., Uzest, M., Galibert, L., Blanc, S., & Michalakis, Y. (2005). Recombination Every Day: Abundant Recombination in a Virus during a Single Multi-Cellular Host Infection. PLoS Biology, 3(3), e89. doi:10.1371/journal.pbio.0030089 es_ES
dc.description.references Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E., & Andino, R. (2005). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 439(7074), 344-348. doi:10.1038/nature04388 es_ES
dc.description.references Zwart, M. P., van der Werf, W., van Oers, M. M., Hemerik, L., van Lent, J. M. V., de Visser, J. A. G. M., … Cory, J. S. (2009). Mixed infections and the competitive fitness of faster-acting genetically modified viruses. Evolutionary Applications, 2(2), 209-221. doi:10.1111/j.1752-4571.2008.00058.x es_ES
dc.description.references Martin, S., & Elena, S. F. (2009). Application of game theory to the interaction between plant viruses during mixed infections. Journal of General Virology, 90(11), 2815-2820. doi:10.1099/vir.0.012351-0 es_ES
dc.description.references Taylor, D. R., Zeyl, C., & Cooke, E. (2002). Conflicting levels of selection in the accumulation of mitochondrial defects inSaccharomycescerevisiae. Proceedings of the National Academy of Sciences, 99(6), 3690-3694. doi:10.1073/pnas.072660299 es_ES
dc.description.references Zwart, M. P., van der Werf, W., Georgievska, L., van Oers, M. M., Vlak, J. M., & Cory, J. S. (2010). Mixed-genotype infections of Trichoplusia ni larvae with Autographa californica multicapsid nucleopolyhedrovirus: Speed of action and persistence of a recombinant in serial passage. Biological Control, 52(1), 77-83. doi:10.1016/j.biocontrol.2009.10.002 es_ES
dc.description.references DRUETT, H. A. (1952). Bacterial Invasion. Nature, 170(4320), 288-288. doi:10.1038/170288a0 es_ES
dc.description.references Furumoto, W. A., & Mickey, R. (1967). A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Experimental tests. Virology, 32(2), 224-233. doi:10.1016/0042-6822(67)90272-3 es_ES
dc.description.references Furumoto, W. A., & Mickey, R. (1967). A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Theoretical considerations. Virology, 32(2), 216-223. doi:10.1016/0042-6822(67)90271-1 es_ES
dc.description.references BALD, J. G. (1937). THE USE OF NUMBERS OF INFECTIONS FOR COMPARING THE CONCENTRATION OF PLANT VIRUS SUSPENSIONS: DILUTION EXPERIMENTS WITH PURIFIED SUSPENSIONS. Annals of Applied Biology, 24(1), 33-55. doi:10.1111/j.1744-7348.1937.tb05019.x es_ES
dc.description.references Gomez, P., Sempere, R. N., Elena, S. F., & Aranda, M. A. (2009). Mixed Infections of Pepino Mosaic Virus Strains Modulate the Evolutionary Dynamics of this Emergent Virus. Journal of Virology, 83(23), 12378-12387. doi:10.1128/jvi.01486-09 es_ES
dc.description.references Hammond, J., Lecoq, H., & Raccah, B. (1999). Epidemiological Risks from Mixed Virus Infections and Transgenic Plants Expressing Viral Genes. Advances in Virus Research, 189-314. doi:10.1016/s0065-3527(08)60368-1 es_ES
dc.description.references López-Ferber, M., Simón, O., Williams, T., & Caballero, P. (2003). Defective or effective? Mutualistic interactions between virus genotypes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1530), 2249-2255. doi:10.1098/rspb.2003.2498 es_ES
dc.description.references Clavijo, G., Williams, T., Muñoz, D., Caballero, P., & López-Ferber, M. (2009). Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus. Proceedings of the Royal Society B: Biological Sciences, 277(1683), 943-951. doi:10.1098/rspb.2009.1838 es_ES
dc.description.references Bennett, C. W. (1953). Interactions between Viruses and Virus Strains. Advances in Virus Research Volume 1, 39-67. doi:10.1016/s0065-3527(08)60461-3 es_ES
dc.description.references Moury, B., Fabre, F., & Senoussi, R. (2007). Estimation of the number of virus particles transmitted by an insect vector. Proceedings of the National Academy of Sciences, 104(45), 17891-17896. doi:10.1073/pnas.0702739104 es_ES
dc.description.references Ali, A., Li, H., Schneider, W. L., Sherman, D. J., Gray, S., Smith, D., & Roossinck, M. J. (2006). Analysis of Genetic Bottlenecks during Horizontal Transmission of Cucumber Mosaic Virus. Journal of Virology, 80(17), 8345-8350. doi:10.1128/jvi.00568-06 es_ES
dc.description.references Betancourt, M., Fereres, A., Fraile, A., & Garcia-Arenal, F. (2008). Estimation of the Effective Number of Founders That Initiate an Infection after Aphid Transmission of a Multipartite Plant Virus. Journal of Virology, 82(24), 12416-12421. doi:10.1128/jvi.01542-08 es_ES
dc.description.references Hall, J. S., French, R., Hein, G. L., Morris, T. J., & Stenger, D. C. (2001). Three Distinct Mechanisms Facilitate Genetic Isolation of Sympatric Wheat Streak Mosaic Virus Lineages. Virology, 282(2), 230-236. doi:10.1006/viro.2001.0841 es_ES
dc.description.references French, R., & Stenger, D. C. (2003). EVOLUTION OFWHEATSTREAKMOSAICVIRUS: Dynamics of Population Growth Within Plants May Explain Limited Variation. Annual Review of Phytopathology, 41(1), 199-214. doi:10.1146/annurev.phyto.41.052002.095559 es_ES
dc.description.references Sacristan, S., Malpica, J. M., Fraile, A., & Garcia-Arenal, F. (2003). Estimation of Population Bottlenecks during Systemic Movement of Tobacco Mosaic Virus in Tobacco Plants. Journal of Virology, 77(18), 9906-9911. doi:10.1128/jvi.77.18.9906-9911.2003 es_ES
dc.description.references Li, H., & Roossinck, M. J. (2004). Genetic Bottlenecks Reduce Population Variation in an Experimental RNA Virus Population. Journal of Virology, 78(19), 10582-10587. doi:10.1128/jvi.78.19.10582-10587.2004 es_ES
dc.description.references Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G., … Zwart, M. P. (2011). The Evolutionary Genetics of Emerging Plant RNA Viruses. Molecular Plant-Microbe Interactions, 24(3), 287-293. doi:10.1094/mpmi-09-10-0214 es_ES
dc.description.references Monsion, B., Froissart, R., Michalakis, Y., & Blanc, S. (2008). Large Bottleneck Size in Cauliflower Mosaic Virus Populations during Host Plant Colonization. PLoS Pathogens, 4(10), e1000174. doi:10.1371/journal.ppat.1000174 es_ES
dc.description.references Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004 es_ES
dc.description.references Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22(12), 1567-1572. doi:10.1038/nbt1037 es_ES
dc.description.references Furumoto, W. A., & Mickey, R. (1970). Mathematical analyses of the interference phenomenon of tobacco mosaic virus: Theoretical considerations. Virology, 40(2), 316-321. doi:10.1016/0042-6822(70)90407-1 es_ES
dc.description.references KLECZKOWSKI, A. (1949). THE TRANSFORMATION OF LOCAL LESION COUNTS FOR STATISTICAL ANALYSIS. Annals of Applied Biology, 36(1), 139-152. doi:10.1111/j.1744-7348.1949.tb06404.x es_ES
dc.description.references Kleczkowski, A. (1950). Interpreting Relationships between the Concentrations of Plant Viruses and Numbers of Local Lesions. Journal of General Microbiology, 4(1), 53-69. doi:10.1099/00221287-4-1-53 es_ES
dc.description.references Ben-Ami, F., Regoes, R. R., & Ebert, D. (2008). A quantitative test of the relationship between parasite dose and infection probability across different host–parasite combinations. Proceedings of the Royal Society B: Biological Sciences, 275(1636), 853-859. doi:10.1098/rspb.2007.1544 es_ES
dc.description.references Ridout, M. S., Fenlon, J. S., & Hughes, P. R. (1993). A Generalized One-Hit Model for Bioassays of Insect Viruses. Biometrics, 49(4), 1136. doi:10.2307/2532255 es_ES
dc.description.references Dieu, B. T. M., Zwart, M. P., & Vlak, J. M. (2010). Can VNTRs be used to study genetic variation within white spot syndrome virus isolates? Journal of Fish Diseases, 33(8), 689-693. doi:10.1111/j.1365-2761.2010.01163.x es_ES
dc.description.references REGOES, R. R., HOTTINGER, J. W., SYGNARSKI, L., & EBERT, D. (2003). The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle. Epidemiology and Infection, 131(2), 957-966. doi:10.1017/s0950268803008793 es_ES
dc.description.references Shalla, T. A. (1964). ASSEMBLY AND AGGREGATION OF TOBACCO MOSAIC VIRUS IN TOMATO LEAFLETS. The Journal of Cell Biology, 21(2), 253-264. doi:10.1083/jcb.21.2.253 es_ES
dc.description.references Miyashita, S., & Kishino, H. (2009). Estimation of the Size of Genetic Bottlenecks in Cell-to-Cell Movement of Soil-Borne Wheat Mosaic Virus and the Possible Role of the Bottlenecks in Speeding Up Selection of Variations in trans-Acting Genes or Elements. Journal of Virology, 84(4), 1828-1837. doi:10.1128/jvi.01890-09 es_ES
dc.description.references Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136 es_ES
dc.description.references Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006 es_ES
dc.description.references Carrasco, P., Daròs, J. A., Agudelo-Romero, P., & Elena, S. F. (2007). A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. Journal of Virological Methods, 139(2), 181-188. doi:10.1016/j.jviromet.2006.09.020 es_ES
dc.description.references Sánchez, F., Martı́nez-Herrera, D., Aguilar, I., & Ponz, F. (1998). Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Research, 55(2), 207-219. doi:10.1016/s0168-1702(98)00049-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem