- -

One is enough: in vivo effective population size is dose-dependent for a plant RNA virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One is enough: in vivo effective population size is dose-dependent for a plant RNA virus

Mostrar el registro completo del ítem

Zwart, MP.; Daros Arnau, JA.; Elena Fito, SF. (2011). One is enough: in vivo effective population size is dose-dependent for a plant RNA virus. PLoS Pathogens. 7(7). https://doi.org/10.1371/journal.ppat.1002122

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28579

Ficheros en el ítem

Metadatos del ítem

Título: One is enough: in vivo effective population size is dose-dependent for a plant RNA virus
Autor: Zwart, Mark Peter Daros Arnau, Jose Antonio Elena Fito, Santiago Fco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Effective population size (N-e) determines the strength of genetic drift and the frequency of co-infection by multiple genotypes, making it a key factor in viral evolution. Experimental estimates of N-e for different ...[+]
Palabras clave: Tobacco-mosaic-virus , Infectivity-dilution curve , Genetic bottlenecks , Etch-virus , Theoretical considerations , Mathematical model , Mixed infections , Transmission , Evolution , Fitness
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS Pathogens. (issn: 1553-7366 )
DOI: 10.1371/journal.ppat.1002122
Editorial:
Public Library of Science
Versión del editor: http://dx.doi.org/10.1371/journal.ppat.1002122
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/
Agradecimientos:
This work has been supported by the Spanish Ministerio de Ciencia e Innovacion grant BFU2009-06993. MPZ was supported by a Rubicon Grant from the Netherlands Organisation for Scientific Research (NWO, www.nwo.nl). The ...[+]
Tipo: Artículo

References

Nijhuis, M., Boucher, C. A. B., Schipper, P., Leitner, T., Schuurman, R., & Albert, J. (1998). Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy. Proceedings of the National Academy of Sciences, 95(24), 14441-14446. doi:10.1073/pnas.95.24.14441

Moya, A., Elena, S. F., Bracho, A., Miralles, R., & Barrio, E. (2000). The evolution of RNA viruses: A population genetics view. Proceedings of the National Academy of Sciences, 97(13), 6967-6973. doi:10.1073/pnas.97.13.6967

Chao, L. (1990). Fitness of RNA virus decreased by Muller’s ratchet. Nature, 348(6300), 454-455. doi:10.1038/348454a0 [+]
Nijhuis, M., Boucher, C. A. B., Schipper, P., Leitner, T., Schuurman, R., & Albert, J. (1998). Stochastic processes strongly influence HIV-1 evolution during suboptimal protease-inhibitor therapy. Proceedings of the National Academy of Sciences, 95(24), 14441-14446. doi:10.1073/pnas.95.24.14441

Moya, A., Elena, S. F., Bracho, A., Miralles, R., & Barrio, E. (2000). The evolution of RNA viruses: A population genetics view. Proceedings of the National Academy of Sciences, 97(13), 6967-6973. doi:10.1073/pnas.97.13.6967

Chao, L. (1990). Fitness of RNA virus decreased by Muller’s ratchet. Nature, 348(6300), 454-455. doi:10.1038/348454a0

De la Iglesia, F., & Elena, S. F. (2007). Fitness Declines in Tobacco Etch Virus upon Serial Bottleneck Transfers. Journal of Virology, 81(10), 4941-4947. doi:10.1128/jvi.02528-06

Bergstrom, C. T., McElhany, P., & Real, L. A. (1999). Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens. Proceedings of the National Academy of Sciences, 96(9), 5095-5100. doi:10.1073/pnas.96.9.5095

Zwart, M. P., Hemerik, L., Cory, J. S., de Visser, J. A. G. M., Bianchi, F. J. J. A., Van Oers, M. M., … Van der Werf, W. (2009). An experimental test of the independent action hypothesis in virus–insect pathosystems. Proceedings of the Royal Society B: Biological Sciences, 276(1665), 2233-2242. doi:10.1098/rspb.2009.0064

Froissart, R., Roze, D., Uzest, M., Galibert, L., Blanc, S., & Michalakis, Y. (2005). Recombination Every Day: Abundant Recombination in a Virus during a Single Multi-Cellular Host Infection. PLoS Biology, 3(3), e89. doi:10.1371/journal.pbio.0030089

Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E., & Andino, R. (2005). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature, 439(7074), 344-348. doi:10.1038/nature04388

Zwart, M. P., van der Werf, W., van Oers, M. M., Hemerik, L., van Lent, J. M. V., de Visser, J. A. G. M., … Cory, J. S. (2009). Mixed infections and the competitive fitness of faster-acting genetically modified viruses. Evolutionary Applications, 2(2), 209-221. doi:10.1111/j.1752-4571.2008.00058.x

Martin, S., & Elena, S. F. (2009). Application of game theory to the interaction between plant viruses during mixed infections. Journal of General Virology, 90(11), 2815-2820. doi:10.1099/vir.0.012351-0

Taylor, D. R., Zeyl, C., & Cooke, E. (2002). Conflicting levels of selection in the accumulation of mitochondrial defects inSaccharomycescerevisiae. Proceedings of the National Academy of Sciences, 99(6), 3690-3694. doi:10.1073/pnas.072660299

Zwart, M. P., van der Werf, W., Georgievska, L., van Oers, M. M., Vlak, J. M., & Cory, J. S. (2010). Mixed-genotype infections of Trichoplusia ni larvae with Autographa californica multicapsid nucleopolyhedrovirus: Speed of action and persistence of a recombinant in serial passage. Biological Control, 52(1), 77-83. doi:10.1016/j.biocontrol.2009.10.002

DRUETT, H. A. (1952). Bacterial Invasion. Nature, 170(4320), 288-288. doi:10.1038/170288a0

Furumoto, W. A., & Mickey, R. (1967). A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Experimental tests. Virology, 32(2), 224-233. doi:10.1016/0042-6822(67)90272-3

Furumoto, W. A., & Mickey, R. (1967). A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Theoretical considerations. Virology, 32(2), 216-223. doi:10.1016/0042-6822(67)90271-1

BALD, J. G. (1937). THE USE OF NUMBERS OF INFECTIONS FOR COMPARING THE CONCENTRATION OF PLANT VIRUS SUSPENSIONS: DILUTION EXPERIMENTS WITH PURIFIED SUSPENSIONS. Annals of Applied Biology, 24(1), 33-55. doi:10.1111/j.1744-7348.1937.tb05019.x

Gomez, P., Sempere, R. N., Elena, S. F., & Aranda, M. A. (2009). Mixed Infections of Pepino Mosaic Virus Strains Modulate the Evolutionary Dynamics of this Emergent Virus. Journal of Virology, 83(23), 12378-12387. doi:10.1128/jvi.01486-09

Hammond, J., Lecoq, H., & Raccah, B. (1999). Epidemiological Risks from Mixed Virus Infections and Transgenic Plants Expressing Viral Genes. Advances in Virus Research, 189-314. doi:10.1016/s0065-3527(08)60368-1

López-Ferber, M., Simón, O., Williams, T., & Caballero, P. (2003). Defective or effective? Mutualistic interactions between virus genotypes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1530), 2249-2255. doi:10.1098/rspb.2003.2498

Clavijo, G., Williams, T., Muñoz, D., Caballero, P., & López-Ferber, M. (2009). Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus. Proceedings of the Royal Society B: Biological Sciences, 277(1683), 943-951. doi:10.1098/rspb.2009.1838

Bennett, C. W. (1953). Interactions between Viruses and Virus Strains. Advances in Virus Research Volume 1, 39-67. doi:10.1016/s0065-3527(08)60461-3

Moury, B., Fabre, F., & Senoussi, R. (2007). Estimation of the number of virus particles transmitted by an insect vector. Proceedings of the National Academy of Sciences, 104(45), 17891-17896. doi:10.1073/pnas.0702739104

Ali, A., Li, H., Schneider, W. L., Sherman, D. J., Gray, S., Smith, D., & Roossinck, M. J. (2006). Analysis of Genetic Bottlenecks during Horizontal Transmission of Cucumber Mosaic Virus. Journal of Virology, 80(17), 8345-8350. doi:10.1128/jvi.00568-06

Betancourt, M., Fereres, A., Fraile, A., & Garcia-Arenal, F. (2008). Estimation of the Effective Number of Founders That Initiate an Infection after Aphid Transmission of a Multipartite Plant Virus. Journal of Virology, 82(24), 12416-12421. doi:10.1128/jvi.01542-08

Hall, J. S., French, R., Hein, G. L., Morris, T. J., & Stenger, D. C. (2001). Three Distinct Mechanisms Facilitate Genetic Isolation of Sympatric Wheat Streak Mosaic Virus Lineages. Virology, 282(2), 230-236. doi:10.1006/viro.2001.0841

French, R., & Stenger, D. C. (2003). EVOLUTION OFWHEATSTREAKMOSAICVIRUS: Dynamics of Population Growth Within Plants May Explain Limited Variation. Annual Review of Phytopathology, 41(1), 199-214. doi:10.1146/annurev.phyto.41.052002.095559

Sacristan, S., Malpica, J. M., Fraile, A., & Garcia-Arenal, F. (2003). Estimation of Population Bottlenecks during Systemic Movement of Tobacco Mosaic Virus in Tobacco Plants. Journal of Virology, 77(18), 9906-9911. doi:10.1128/jvi.77.18.9906-9911.2003

Li, H., & Roossinck, M. J. (2004). Genetic Bottlenecks Reduce Population Variation in an Experimental RNA Virus Population. Journal of Virology, 78(19), 10582-10587. doi:10.1128/jvi.78.19.10582-10587.2004

Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G., … Zwart, M. P. (2011). The Evolutionary Genetics of Emerging Plant RNA Viruses. Molecular Plant-Microbe Interactions, 24(3), 287-293. doi:10.1094/mpmi-09-10-0214

Monsion, B., Froissart, R., Michalakis, Y., & Blanc, S. (2008). Large Bottleneck Size in Cauliflower Mosaic Virus Populations during Host Plant Colonization. PLoS Pathogens, 4(10), e1000174. doi:10.1371/journal.ppat.1000174

Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004

Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 22(12), 1567-1572. doi:10.1038/nbt1037

Furumoto, W. A., & Mickey, R. (1970). Mathematical analyses of the interference phenomenon of tobacco mosaic virus: Theoretical considerations. Virology, 40(2), 316-321. doi:10.1016/0042-6822(70)90407-1

KLECZKOWSKI, A. (1949). THE TRANSFORMATION OF LOCAL LESION COUNTS FOR STATISTICAL ANALYSIS. Annals of Applied Biology, 36(1), 139-152. doi:10.1111/j.1744-7348.1949.tb06404.x

Kleczkowski, A. (1950). Interpreting Relationships between the Concentrations of Plant Viruses and Numbers of Local Lesions. Journal of General Microbiology, 4(1), 53-69. doi:10.1099/00221287-4-1-53

Ben-Ami, F., Regoes, R. R., & Ebert, D. (2008). A quantitative test of the relationship between parasite dose and infection probability across different host–parasite combinations. Proceedings of the Royal Society B: Biological Sciences, 275(1636), 853-859. doi:10.1098/rspb.2007.1544

Ridout, M. S., Fenlon, J. S., & Hughes, P. R. (1993). A Generalized One-Hit Model for Bioassays of Insect Viruses. Biometrics, 49(4), 1136. doi:10.2307/2532255

Dieu, B. T. M., Zwart, M. P., & Vlak, J. M. (2010). Can VNTRs be used to study genetic variation within white spot syndrome virus isolates? Journal of Fish Diseases, 33(8), 689-693. doi:10.1111/j.1365-2761.2010.01163.x

REGOES, R. R., HOTTINGER, J. W., SYGNARSKI, L., & EBERT, D. (2003). The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle. Epidemiology and Infection, 131(2), 957-966. doi:10.1017/s0950268803008793

Shalla, T. A. (1964). ASSEMBLY AND AGGREGATION OF TOBACCO MOSAIC VIRUS IN TOMATO LEAFLETS. The Journal of Cell Biology, 21(2), 253-264. doi:10.1083/jcb.21.2.253

Miyashita, S., & Kishino, H. (2009). Estimation of the Size of Genetic Bottlenecks in Cell-to-Cell Movement of Soil-Borne Wheat Mosaic Virus and the Possible Role of the Bottlenecks in Speeding Up Selection of Variations in trans-Acting Genes or Elements. Journal of Virology, 84(4), 1828-1837. doi:10.1128/jvi.01890-09

Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136

Bedoya, L., Martínez, F., Rubio, L., & Daròs, J.-A. (2010). Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. Journal of Biotechnology, 150(2), 268-275. doi:10.1016/j.jbiotec.2010.08.006

Carrasco, P., Daròs, J. A., Agudelo-Romero, P., & Elena, S. F. (2007). A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. Journal of Virological Methods, 139(2), 181-188. doi:10.1016/j.jviromet.2006.09.020

Sánchez, F., Martı́nez-Herrera, D., Aguilar, I., & Ponz, F. (1998). Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Research, 55(2), 207-219. doi:10.1016/s0168-1702(98)00049-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem