- -

High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs

Show full item record

Martínez Navarro, G.; Forment Millet, JJ.; Llave, C.; Pallás Benet, V.; Gomez, GG. (2011). High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PLoS ONE. 5(6):19523-19523. https://doi.org/10.1371/journal.pone.0019523

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28589

Files in this item

Item Metadata

Title: High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs
Author: Martínez Navarro, Germán Forment Millet, José Javier Llave, Cesar Pallás Benet, Vicente Gomez, Gustavo Germán
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Micro RNAS (miRNAs) are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from ...[+]
Subjects: Arabidopsis-Thaliana , Plant micrornas , Messenger-rna , Genes , Identification , Evolution , Targets , Annotation , Expression , Cleavage
Copyrigths: Reconocimiento (by)
Source:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0019523
Publisher:
Public Library of Science
Publisher version: http://dx.doi.org/10.1371/journal.pone.0019523
Project ID:
info:eu-repo/grantAgreement/MICINN//BIO2008-03528/ES/INTERACCIONES PATOGENO-HUESPED EN EL TRANSPORTE CELULAR Y VASCULAR DE VIRUS DE INTERES AGRONOMICO./
info:eu-repo/grantAgreement/GVA//ACOMP%2F2010%2F214/
Thanks:
This work was supported by grant BIO2008-03528 from the Spanish granting agency DGICYT and by grant ACOMP/2010/214 from the Generalitat Valenciana. The funders had no role in study design, data collection and analysis, ...[+]
Type: Artículo

References

Llave, C. (2002). Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 297(5589), 2053-2056. doi:10.1126/science.1076311

Reinhart, B. J. (2002). MicroRNAs in plants. Genes & Development, 16(13), 1616-1626. doi:10.1101/gad.1004402

Xie, Z., Khanna, K., & Ruan, S. (2010). Expression of microRNAs and its regulation in plants. Seminars in Cell & Developmental Biology, 21(8), 790-797. doi:10.1016/j.semcdb.2010.03.012 [+]
Llave, C. (2002). Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA. Science, 297(5589), 2053-2056. doi:10.1126/science.1076311

Reinhart, B. J. (2002). MicroRNAs in plants. Genes & Development, 16(13), 1616-1626. doi:10.1101/gad.1004402

Xie, Z., Khanna, K., & Ruan, S. (2010). Expression of microRNAs and its regulation in plants. Seminars in Cell & Developmental Biology, 21(8), 790-797. doi:10.1016/j.semcdb.2010.03.012

Jones-Rhoades, M. W., Bartel, D. P., & Bartel, B. (2006). MicroRNAs AND THEIR REGULATORY ROLES IN PLANTS. Annual Review of Plant Biology, 57(1), 19-53. doi:10.1146/annurev.arplant.57.032905.105218

Allen, E., Xie, Z., Gustafson, A. M., Sung, G.-H., Spatafora, J. W., & Carrington, J. C. (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genetics, 36(12), 1282-1290. doi:10.1038/ng1478

Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J. S., … Carrington, J. C. (2007). High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes. PLoS ONE, 2(2), e219. doi:10.1371/journal.pone.0000219

Rajagopalan, R., Vaucheret, H., Trejo, J., & Bartel, D. P. (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development, 20(24), 3407-3425. doi:10.1101/gad.1476406

Moxon, S., Jing, R., Szittya, G., Schwach, F., Rusholme Pilcher, R. L., Moulton, V., & Dalmay, T. (2008). Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Research, 18(10), 1602-1609. doi:10.1101/gr.080127.108

Szittya, G., Moxon, S., Santos, D. M., Jing, R., Fevereiro, M. P., Moulton, V., & Dalmay, T. (2008). High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics, 9(1), 593. doi:10.1186/1471-2164-9-593

Song, C., Wang, C., Zhang, C., Korir, N., Yu, H., Ma, Z., & Fang, J. (2010). Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genomics, 11(1), 431. doi:10.1186/1471-2164-11-431

AMBROS, V. (2003). A uniform system for microRNA annotation. RNA, 9(3), 277-279. doi:10.1261/rna.2183803

Meyers, B. C., Axtell, M. J., Bartel, B., Bartel, D. P., Baulcombe, D., Bowman, J. L., … Zhu, J.-K. (2008). Criteria for Annotation of Plant MicroRNAs. The Plant Cell, 20(12), 3186-3190. doi:10.1105/tpc.108.064311

Tanurdzic, M. (2004). Sex-Determining Mechanisms in Land Plants. THE PLANT CELL ONLINE, 16(suppl_1), S61-S71. doi:10.1105/tpc.016667

Lough, T. J., & Lucas, W. J. (2006). INTEGRATIVE PLANT BIOLOGY: Role of Phloem Long-Distance Macromolecular Trafficking. Annual Review of Plant Biology, 57(1), 203-232. doi:10.1146/annurev.arplant.56.032604.144145

Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., … Ni, P. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41(12), 1275-1281. doi:10.1038/ng.475

MARTINEZ, G., DONAIRE, L., LLAVE, C., PALLAS, V., & GOMEZ, G. (2010). High-throughput sequencing ofHop stunt viroid-derived small RNAs from cucumber leaves and phloem. Molecular Plant Pathology, 11(3), 347-359. doi:10.1111/j.1364-3703.2009.00608.x

Moxon, S., Schwach, F., Dalmay, T., MacLean, D., Studholme, D. J., & Moulton, V. (2008). A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics, 24(19), 2252-2253. doi:10.1093/bioinformatics/btn428

Morin, R. D., Aksay, G., Dolgosheina, E., Ebhardt, H. A., Magrini, V., Mardis, E. R., … Unrau, P. J. (2008). Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Research, 18(4), 571-584. doi:10.1101/gr.6897308

Sunkar, R., Zhou, X., Zheng, Y., Zhang, W., & Zhu, J.-K. (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology, 8(1), 25. doi:10.1186/1471-2229-8-25

Frazier, T. P., Xie, F., Freistaedter, A., Burklew, C. E., & Zhang, B. (2010). Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum). Planta, 232(6), 1289-1308. doi:10.1007/s00425-010-1255-1

Wang, Y., Li, P., Cao, X., Wang, X., Zhang, A., & Li, X. (2009). Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochemical and Biophysical Research Communications, 378(4), 799-803. doi:10.1016/j.bbrc.2008.11.140

Poethig, R. S. (2009). Small RNAs and developmental timing in plants. Current Opinion in Genetics & Development, 19(4), 374-378. doi:10.1016/j.gde.2009.06.001

Voinnet, O. (2009). Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell, 136(4), 669-687. doi:10.1016/j.cell.2009.01.046

Husbands, A. Y., Chitwood, D. H., Plavskin, Y., & Timmermans, M. C. P. (2009). Signals and prepatterns: new insights into organ polarity in plants. Genes & Development, 23(17), 1986-1997. doi:10.1101/gad.1819909

SHABALINA, S., & KOONIN, E. (2008). Origins and evolution of eukaryotic RNA interference. Trends in Ecology & Evolution, 23(10), 578-587. doi:10.1016/j.tree.2008.06.005

Axtell, M. J., & Bowman, J. L. (2008). Evolution of plant microRNAs and their targets. Trends in Plant Science, 13(7), 343-349. doi:10.1016/j.tplants.2008.03.009

Vazquez, F., Blevins, T., Ailhas, J., Boller, T., & Meins, F. (2008). Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Research, 36(20), 6429-6438. doi:10.1093/nar/gkn670

Yao, Y., Guo, G., Ni, Z., Sunkar, R., Du, J., Zhu, J.-K., & Sun, Q. (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology, 8(6), R96. doi:10.1186/gb-2007-8-6-r96

Klevebring, D., Street, N. R., Fahlgren, N., Kasschau, K. D., Carrington, J. C., Lundeberg, J., & Jansson, S. (2009). Genome-wide profiling of Populus small RNAs. BMC Genomics, 10(1), 620. doi:10.1186/1471-2164-10-620

Rymarquis, L. A., Kastenmayer, J. P., Hüttenhofer, A. G., & Green, P. J. (2008). Diamonds in the rough: mRNA-like non-coding RNAs. Trends in Plant Science, 13(7), 329-334. doi:10.1016/j.tplants.2008.02.009

Alves-Junior, L., Niemeier, S., Hauenschild, A., Rehmsmeier, M., & Merkle, T. (2009). Comprehensive prediction of novel microRNA targets in Arabidopsis thaliana. Nucleic Acids Research, 37(12), 4010-4021. doi:10.1093/nar/gkp272

Beauclair, L., Yu, A., & Bouché, N. (2010). microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. The Plant Journal, 62(3), 454-462. doi:10.1111/j.1365-313x.2010.04162.x

Gómez, G., & Pallás, V. (2007). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. The Plant Journal, 51(6), 1041-1049. doi:10.1111/j.1365-313x.2007.03203.x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record