- -

Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter

Show simple item record

Files in this item

dc.contributor.author Tortajada Genaro, Luis Antonio es_ES
dc.contributor.author Borrás García, Esther Mª es_ES
dc.date.accessioned 2013-05-07T11:52:29Z
dc.date.issued 2011
dc.identifier.issn 1464-0325
dc.identifier.uri http://hdl.handle.net/10251/28647
dc.description.abstract The tapered element oscillating microbalance (TEOM) system is widely used to measure continuous particle mass concentrations in air quality networks. However, the semi-volatile aerosol material is lost under normal operation conditions (50 °C). This study has evaluated the error in the organic fraction of the TEOM-measured secondary organic aerosols formed from the degradation of biogenic pollutants. Experiments were carried out under controlled, water-free conditions in a fully equipped, high volume atmospheric simulator - the European PhotoReactor (EUPHORE). The ozonolysis of ¿-pinene, ß-pinene and limonene provided a reproducible source of organic aerosol. Particulate matter concentration profiles were registered for different TEOM operating temperatures. When these values were compared with values from a filter-based gravimetric method and a scanning mobility particle sizer (SMPS), they showed that the differences between monitoring systems increased with increasing TEOM temperature. According to our results, when the TEOM is operated at 50 °C, it fails to measure 32-46% of the organic particulate material, depending on the aerosol precursor. This study has also identified and quantified the multi-oxygenated organic compounds lost in the TEOM monitoring by using a method based on the gas chromatography-mass spectrometry technique. Important losses have been calculated for relevant ambient aerosol compounds such as pinonic acid, pinonaldehyde, norpinone and limonalic acid. In conclusion, the present study has demonstrated that a high operating temperature of the TEOM monitor reduces the humidity interference but underestimates the semi-volatile organic fraction. © The Royal Society of Chemistry. es_ES
dc.description.sponsorship We gratefully acknowledge the Generalitat Valenciana, the GRACCIE CBS2007-00067 project in the CONSOLIDER-INGENIO 2010 program and Bancaixa for supporting this study. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation Generalitat Valenciana es_ES
dc.relation GRACCIE CBS2007-00067 es_ES
dc.relation Bancaixa es_ES
dc.relation.ispartof Journal of Environmental Monitoring es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Beta pinene es_ES
dc.subject Limonene es_ES
dc.subject Organic compound es_ES
dc.subject Pinene es_ES
dc.subject Air quality es_ES
dc.subject Article es_ES
dc.subject Controlled study es_ES
dc.subject Gas chromatography es_ES
dc.subject Mass spectrometry es_ES
dc.subject Ozonolysis es_ES
dc.subject Priority journal es_ES
dc.subject Secondary organic aerosol es_ES
dc.subject Temperature sensitivity es_ES
dc.subject Aerosols es_ES
dc.subject Environmental Monitoring es_ES
dc.subject Reproducibility of Results es_ES
dc.subject Temperature es_ES
dc.subject Thermogravimetry es_ES
dc.subject Volatile Organic Compounds es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1039/c0em00451k
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Tortajada Genaro, LA.; Borrás García, EM. (2011). Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter. Journal of Environmental Monitoring. 13:1017-1026. doi:10.1039/c0em00451k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://pubs.rsc.org/en/content/articlepdf/2011/em/c0em00451k es_ES
dc.description.upvformatpinicio 1017 es_ES
dc.description.upvformatpfin 1026 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.relation.senia 212825
dc.description.references Patashnick, H., & Rupprecht, E. G. (1991). Continuous PM-10 Measurements Using the Tapered Element Oscillating Microbalance. Journal of the Air & Waste Management Association, 41(8), 1079-1083. doi:10.1080/10473289.1991.10466903 es_ES
dc.description.references Page, S. J., Tuchman, D. P., & Vinson, R. P. (2007). Thermally induced filter bias in TEOM mass measurement. Journal of Environmental Monitoring, 9(7), 760. doi:10.1039/b704424k es_ES
dc.description.references Charron, A. (2004). Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (Partisol) instruments. Atmospheric Environment, 38(3), 415-423. doi:10.1016/j.atmosenv.2003.09.072 es_ES
dc.description.references Cyrys, J., Dietrich, G., Kreyling, W., Tuch, T., & Heinrich, J. (2001). PM2.5 measurements in ambient aerosol: comparison between Harvard impactor (HI) and the tapered element oscillating microbalance (TEOM) system. Science of The Total Environment, 278(1-3), 191-197. doi:10.1016/s0048-9697(01)00648-9 es_ES
dc.description.references Jaques, P. A., Ambs, J. L., Grant, W. L., & Sioutas, C. (2004). Field Evaluation of the Differential TEOM Monitor for Continuous PM2.5Mass Concentrations Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 38(sup1), 49-59. doi:10.1080/02786820390229435 es_ES
dc.description.references Green, D. C., Fuller, G. W., & Baker, T. (2009). Development and validation of the volatile correction model for PM10 – An empirical method for adjusting TEOM measurements for their loss of volatile particulate matter. Atmospheric Environment, 43(13), 2132-2141. doi:10.1016/j.atmosenv.2009.01.024 es_ES
dc.description.references Eatough, D. J., Long, R. W., Modey, W. K., & Eatough, N. L. (2003). Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge. Atmospheric Environment, 37(9-10), 1277-1292. doi:10.1016/s1352-2310(02)01020-8 es_ES
dc.description.references Hering, S., Fine, P. M., Sioutas, C., Jaques, P. A., Ambs, J. L., Hogrefe, O., & Demerjian, K. L. (2004). Field assessment of the dynamics of particulate nitrate vaporization using differential TEOM® and automated nitrate monitors. Atmospheric Environment, 38(31), 5183-5192. doi:10.1016/j.atmosenv.2004.02.066 es_ES
dc.description.references Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., … Wilson, J. (2005). Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5(4), 1053-1123. doi:10.5194/acp-5-1053-2005 es_ES
dc.description.references Long, R. W., Eatough, N. L., Mangelson, N. F., Thompson, W., Fiet, K., Smith, S., … Wilson, W. E. (2003). The measurement of PM2.5, including semi-volatile components, in the EMPACT program: results from the Salt Lake City Study. Atmospheric Environment, 37(31), 4407-4417. doi:10.1016/s1352-2310(03)00585-5 es_ES
dc.description.references Grover, B. D., Eatough, N. L., Eatough, D. J., Chow, J. C., Watson, J. G., Ambs, J. L., … Wilson, W. E. (2006). Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno, CA. Aerosol Science and Technology, 40(10), 811-826. doi:10.1080/02786820600615071 es_ES
dc.description.references Atkinson, R., & Arey, J. (2003). Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment, 37, 197-219. doi:10.1016/s1352-2310(03)00391-1 es_ES
dc.description.references Kroll, J. H., Chan, A. W. H., Ng, N. L., Flagan, R. C., & Seinfeld, J. H. (2007). Reactions of Semivolatile Organics and Their Effects on Secondary Organic Aerosol Formation. Environmental Science & Technology, 41(10), 3545-3550. doi:10.1021/es062059x es_ES
dc.description.references Svendby, T. M., Lazaridis, M., & Tørseth, K. (2008). Temperature dependent secondary organic aerosol formation from terpenes and aromatics. Journal of Atmospheric Chemistry, 59(1), 25-46. doi:10.1007/s10874-007-9093-7 es_ES
dc.description.references Yu, J., Cocker III, D. R., Griffin, R. J., Flagan, R. C., & Seinfeld, J. H. (1999). Journal of Atmospheric Chemistry, 34(2), 207-258. doi:10.1023/a:1006254930583 es_ES
dc.description.references Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H., … Coe, H. (2006). A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmospheric Chemistry and Physics, 6(12), 5279-5293. doi:10.5194/acp-6-5279-2006 es_ES
dc.description.references Iinuma, Y., Böge, O., Gnauk, T., & Herrmann, H. (2004). Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products. Atmospheric Environment, 38(5), 761-773. doi:10.1016/j.atmosenv.2003.10.015 es_ES
dc.description.references Leungsakul, S., Jaoui, M., & Kamens, R. M. (2005). Kinetic Mechanism for Predicting Secondary Organic Aerosol Formation from the Reaction ofd-Limonene with Ozone. Environmental Science & Technology, 39(24), 9583-9594. doi:10.1021/es0492687 es_ES
dc.description.references Ma, Y., Russell, A. T., & Marston, G. (2008). Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of α-pinene. Physical Chemistry Chemical Physics, 10(29), 4294. doi:10.1039/b803283a es_ES
dc.description.references Lee, S., & Kamens, R. M. (2005). Particle nucleation from the reaction of α-pinene and O3. Atmospheric Environment, 39(36), 6822-6832. doi:10.1016/j.atmosenv.2005.07.062 es_ES
dc.description.references Capouet, M., & Müller, J.-F. (2006). A group contribution method for estimating the vapour pressures of α-pinene oxidation products. Atmospheric Chemistry and Physics, 6(6), 1455-1467. doi:10.5194/acp-6-1455-2006 es_ES
dc.description.references Calogirou, A., Larsen, B. R., & Kotzias, D. (1999). Gas-phase terpene oxidation products: a review. Atmospheric Environment, 33(9), 1423-1439. doi:10.1016/s1352-2310(98)00277-5 es_ES
dc.description.references Orzechowska, G. E., Nguyen, H. T., & Paulson, S. E. (2005). Photochemical Sources of Organic Acids. 2. Formation of C5−C9Carboxylic Acids from Alkene Ozonolysis under Dry and Humid Conditions. The Journal of Physical Chemistry A, 109(24), 5366-5375. doi:10.1021/jp050167k es_ES
dc.description.references Koch, S., Winterhalter, R., Uherek, E., Kolloff, A., Neeb, P., & Moortgat, G. K. (2000). Formation of new particles in the gas-phase ozonolysis of monoterpenes. Atmospheric Environment, 34(23), 4031-4042. doi:10.1016/s1352-2310(00)00133-3 es_ES
dc.description.references Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., & Edney, E. O. (2005). Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic or Hydroxyl Groups. 2. Organic Tracer Compounds from Monoterpenes. Environmental Science & Technology, 39(15), 5661-5673. doi:10.1021/es048111b es_ES
dc.description.references Claeys, M., Szmigielski, R., Kourtchev, I., Van der Veken, P., Vermeylen, R., Maenhaut, W., … Edney, E. O. (2007). Hydroxydicarboxylic Acids:  Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene. Environmental Science & Technology, 41(5), 1628-1634. doi:10.1021/es0620181 es_ES
dc.description.references Sciare, J., Sarda-Estève, R., Favez, O., Cachier, H., Aymoz, G., & Laj, P. (2008). Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM). Atmospheric Environment, 42(9), 2158-2172. doi:10.1016/j.atmosenv.2007.11.053 es_ES
dc.description.references Slowik, J. G., Stroud, C., Bottenheim, J. W., Brickell, P. C., Chang, R. Y.-W., Liggio, J., … Abbatt, J. P. D. (2010). Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests. Atmospheric Chemistry and Physics, 10(6), 2825-2845. doi:10.5194/acp-10-2825-2010 es_ES
dc.description.references Kavouras, I. G., Mihalopoulos, N., & Stephanou, E. G. (1999). Secondary Organic Aerosol Formation vs Primary Organic Aerosol Emission:  In Situ Evidence for the Chemical Coupling between Monoterpene Acidic Photooxidation Products and New Particle Formation over Forests. Environmental Science & Technology, 33(7), 1028-1037. doi:10.1021/es9807035 es_ES
dc.description.references Plewka, A., Gnauk, T., Brüggemann, E., & Herrmann, H. (2006). Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany. Atmospheric Environment, 40, 103-115. doi:10.1016/j.atmosenv.2005.09.090 es_ES


This item appears in the following Collection(s)

Show simple item record