dc.contributor.author |
Tortajada Genaro, Luis Antonio
|
es_ES |
dc.contributor.author |
Borrás García, Esther Mª
|
es_ES |
dc.date.accessioned |
2013-05-07T11:52:29Z |
|
dc.date.issued |
2011 |
|
dc.identifier.issn |
1464-0325 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/28647 |
|
dc.description.abstract |
The tapered element oscillating microbalance (TEOM) system is widely used to measure continuous particle mass concentrations in air quality networks. However, the semi-volatile aerosol material is lost under normal operation conditions (50 °C). This study has evaluated the error in the organic fraction of the TEOM-measured secondary organic aerosols formed from the degradation of biogenic pollutants. Experiments were carried out under controlled, water-free conditions in a fully equipped, high volume atmospheric simulator - the European PhotoReactor (EUPHORE). The ozonolysis of ¿-pinene, ß-pinene and limonene provided a reproducible source of organic aerosol. Particulate matter concentration profiles were registered for different TEOM operating temperatures. When these values were compared with values from a filter-based gravimetric method and a scanning mobility particle sizer (SMPS), they showed that the differences between monitoring systems increased with increasing TEOM temperature. According to our results, when the TEOM is operated at 50 °C, it fails to measure 32-46% of the organic particulate material, depending on the aerosol precursor. This study has also identified and quantified the multi-oxygenated organic compounds lost in the TEOM monitoring by using a method based on the gas chromatography-mass spectrometry technique. Important losses have been calculated for relevant ambient aerosol compounds such as pinonic acid, pinonaldehyde, norpinone and limonalic acid. In conclusion, the present study has demonstrated that a high operating temperature of the TEOM monitor reduces the humidity interference but underestimates the semi-volatile organic fraction. © The Royal Society of Chemistry. |
es_ES |
dc.description.sponsorship |
We gratefully acknowledge the Generalitat Valenciana, the GRACCIE CBS2007-00067 project in the CONSOLIDER-INGENIO 2010 program and Bancaixa for supporting this study. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Royal Society of Chemistry |
es_ES |
dc.relation.ispartof |
Journal of Environmental Monitoring |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Beta pinene |
es_ES |
dc.subject |
Limonene |
es_ES |
dc.subject |
Organic compound |
es_ES |
dc.subject |
Pinene |
es_ES |
dc.subject |
Air quality |
es_ES |
dc.subject |
Article |
es_ES |
dc.subject |
Controlled study |
es_ES |
dc.subject |
Gas chromatography |
es_ES |
dc.subject |
Mass spectrometry |
es_ES |
dc.subject |
Ozonolysis |
es_ES |
dc.subject |
Priority journal |
es_ES |
dc.subject |
Secondary organic aerosol |
es_ES |
dc.subject |
Temperature sensitivity |
es_ES |
dc.subject |
Aerosols |
es_ES |
dc.subject |
Environmental Monitoring |
es_ES |
dc.subject |
Reproducibility of Results |
es_ES |
dc.subject |
Temperature |
es_ES |
dc.subject |
Thermogravimetry |
es_ES |
dc.subject |
Volatile Organic Compounds |
es_ES |
dc.subject.classification |
QUIMICA ANALITICA |
es_ES |
dc.title |
Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter |
es_ES |
dc.type |
Artículo |
es_ES |
dc.embargo.lift |
10000-01-01 |
|
dc.embargo.terms |
forever |
es_ES |
dc.identifier.doi |
10.1039/c0em00451k |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//CSD2007-00067/ES/MULTIDISCIPLINARY RESEARCH CONSORTIUM ON GRADUAL AND ABRUPT CLIMATE CHANGES, AND THEIR IMPACTS ON THE ENVIRONMENT (GRACCIE)/
/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Química - Departament de Química |
es_ES |
dc.description.bibliographicCitation |
Tortajada Genaro, LA.; Borrás García, EM. (2011). Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter. Journal of Environmental Monitoring. 13:1017-1026. doi:10.1039/c0em00451k |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://pubs.rsc.org/en/content/articlepdf/2011/em/c0em00451k |
es_ES |
dc.description.upvformatpinicio |
1017 |
es_ES |
dc.description.upvformatpfin |
1026 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
13 |
es_ES |
dc.relation.senia |
212825 |
|
dc.contributor.funder |
Ministerio de Educación y Ciencia |
es_ES |
dc.contributor.funder |
Fundación Bancaja |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.description.references |
Patashnick, H., & Rupprecht, E. G. (1991). Continuous PM-10 Measurements Using the Tapered Element Oscillating Microbalance. Journal of the Air & Waste Management Association, 41(8), 1079-1083. doi:10.1080/10473289.1991.10466903 |
es_ES |
dc.description.references |
Page, S. J., Tuchman, D. P., & Vinson, R. P. (2007). Thermally induced filter bias in TEOM mass measurement. Journal of Environmental Monitoring, 9(7), 760. doi:10.1039/b704424k |
es_ES |
dc.description.references |
Charron, A. (2004). Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (Partisol) instruments. Atmospheric Environment, 38(3), 415-423. doi:10.1016/j.atmosenv.2003.09.072 |
es_ES |
dc.description.references |
Cyrys, J., Dietrich, G., Kreyling, W., Tuch, T., & Heinrich, J. (2001). PM2.5 measurements in ambient aerosol: comparison between Harvard impactor (HI) and the tapered element oscillating microbalance (TEOM) system. Science of The Total Environment, 278(1-3), 191-197. doi:10.1016/s0048-9697(01)00648-9 |
es_ES |
dc.description.references |
Jaques, P. A., Ambs, J. L., Grant, W. L., & Sioutas, C. (2004). Field Evaluation of the Differential TEOM Monitor for Continuous PM2.5Mass Concentrations Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 38(sup1), 49-59. doi:10.1080/02786820390229435 |
es_ES |
dc.description.references |
Green, D. C., Fuller, G. W., & Baker, T. (2009). Development and validation of the volatile correction model for PM10 – An empirical method for adjusting TEOM measurements for their loss of volatile particulate matter. Atmospheric Environment, 43(13), 2132-2141. doi:10.1016/j.atmosenv.2009.01.024 |
es_ES |
dc.description.references |
Eatough, D. J., Long, R. W., Modey, W. K., & Eatough, N. L. (2003). Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge. Atmospheric Environment, 37(9-10), 1277-1292. doi:10.1016/s1352-2310(02)01020-8 |
es_ES |
dc.description.references |
Hering, S., Fine, P. M., Sioutas, C., Jaques, P. A., Ambs, J. L., Hogrefe, O., & Demerjian, K. L. (2004). Field assessment of the dynamics of particulate nitrate vaporization using differential TEOM® and automated nitrate monitors. Atmospheric Environment, 38(31), 5183-5192. doi:10.1016/j.atmosenv.2004.02.066 |
es_ES |
dc.description.references |
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., … Wilson, J. (2005). Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5(4), 1053-1123. doi:10.5194/acp-5-1053-2005 |
es_ES |
dc.description.references |
Long, R. W., Eatough, N. L., Mangelson, N. F., Thompson, W., Fiet, K., Smith, S., … Wilson, W. E. (2003). The measurement of PM2.5, including semi-volatile components, in the EMPACT program: results from the Salt Lake City Study. Atmospheric Environment, 37(31), 4407-4417. doi:10.1016/s1352-2310(03)00585-5 |
es_ES |
dc.description.references |
Grover, B. D., Eatough, N. L., Eatough, D. J., Chow, J. C., Watson, J. G., Ambs, J. L., … Wilson, W. E. (2006). Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno, CA. Aerosol Science and Technology, 40(10), 811-826. doi:10.1080/02786820600615071 |
es_ES |
dc.description.references |
Atkinson, R., & Arey, J. (2003). Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment, 37, 197-219. doi:10.1016/s1352-2310(03)00391-1 |
es_ES |
dc.description.references |
Kroll, J. H., Chan, A. W. H., Ng, N. L., Flagan, R. C., & Seinfeld, J. H. (2007). Reactions of Semivolatile Organics and Their Effects on Secondary Organic Aerosol Formation. Environmental Science & Technology, 41(10), 3545-3550. doi:10.1021/es062059x |
es_ES |
dc.description.references |
Svendby, T. M., Lazaridis, M., & Tørseth, K. (2008). Temperature dependent secondary organic aerosol formation from terpenes and aromatics. Journal of Atmospheric Chemistry, 59(1), 25-46. doi:10.1007/s10874-007-9093-7 |
es_ES |
dc.description.references |
Yu, J., Cocker III, D. R., Griffin, R. J., Flagan, R. C., & Seinfeld, J. H. (1999). Journal of Atmospheric Chemistry, 34(2), 207-258. doi:10.1023/a:1006254930583 |
es_ES |
dc.description.references |
Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H., … Coe, H. (2006). A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmospheric Chemistry and Physics, 6(12), 5279-5293. doi:10.5194/acp-6-5279-2006 |
es_ES |
dc.description.references |
Iinuma, Y., Böge, O., Gnauk, T., & Herrmann, H. (2004). Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products. Atmospheric Environment, 38(5), 761-773. doi:10.1016/j.atmosenv.2003.10.015 |
es_ES |
dc.description.references |
Leungsakul, S., Jaoui, M., & Kamens, R. M. (2005). Kinetic Mechanism for Predicting Secondary Organic Aerosol Formation from the Reaction ofd-Limonene with Ozone. Environmental Science & Technology, 39(24), 9583-9594. doi:10.1021/es0492687 |
es_ES |
dc.description.references |
Ma, Y., Russell, A. T., & Marston, G. (2008). Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of α-pinene. Physical Chemistry Chemical Physics, 10(29), 4294. doi:10.1039/b803283a |
es_ES |
dc.description.references |
Lee, S., & Kamens, R. M. (2005). Particle nucleation from the reaction of α-pinene and O3. Atmospheric Environment, 39(36), 6822-6832. doi:10.1016/j.atmosenv.2005.07.062 |
es_ES |
dc.description.references |
Capouet, M., & Müller, J.-F. (2006). A group contribution method for estimating the vapour pressures of α-pinene oxidation products. Atmospheric Chemistry and Physics, 6(6), 1455-1467. doi:10.5194/acp-6-1455-2006 |
es_ES |
dc.description.references |
Calogirou, A., Larsen, B. R., & Kotzias, D. (1999). Gas-phase terpene oxidation products: a review. Atmospheric Environment, 33(9), 1423-1439. doi:10.1016/s1352-2310(98)00277-5 |
es_ES |
dc.description.references |
Orzechowska, G. E., Nguyen, H. T., & Paulson, S. E. (2005). Photochemical Sources of Organic Acids. 2. Formation of C5−C9Carboxylic Acids from Alkene Ozonolysis under Dry and Humid Conditions. The Journal of Physical Chemistry A, 109(24), 5366-5375. doi:10.1021/jp050167k |
es_ES |
dc.description.references |
Koch, S., Winterhalter, R., Uherek, E., Kolloff, A., Neeb, P., & Moortgat, G. K. (2000). Formation of new particles in the gas-phase ozonolysis of monoterpenes. Atmospheric Environment, 34(23), 4031-4042. doi:10.1016/s1352-2310(00)00133-3 |
es_ES |
dc.description.references |
Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., & Edney, E. O. (2005). Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic or Hydroxyl Groups. 2. Organic Tracer Compounds from Monoterpenes. Environmental Science & Technology, 39(15), 5661-5673. doi:10.1021/es048111b |
es_ES |
dc.description.references |
Claeys, M., Szmigielski, R., Kourtchev, I., Van der Veken, P., Vermeylen, R., Maenhaut, W., … Edney, E. O. (2007). Hydroxydicarboxylic Acids: Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene. Environmental Science & Technology, 41(5), 1628-1634. doi:10.1021/es0620181 |
es_ES |
dc.description.references |
Sciare, J., Sarda-Estève, R., Favez, O., Cachier, H., Aymoz, G., & Laj, P. (2008). Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM). Atmospheric Environment, 42(9), 2158-2172. doi:10.1016/j.atmosenv.2007.11.053 |
es_ES |
dc.description.references |
Slowik, J. G., Stroud, C., Bottenheim, J. W., Brickell, P. C., Chang, R. Y.-W., Liggio, J., … Abbatt, J. P. D. (2010). Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests. Atmospheric Chemistry and Physics, 10(6), 2825-2845. doi:10.5194/acp-10-2825-2010 |
es_ES |
dc.description.references |
Kavouras, I. G., Mihalopoulos, N., & Stephanou, E. G. (1999). Secondary Organic Aerosol Formation vs Primary Organic Aerosol Emission: In Situ Evidence for the Chemical Coupling between Monoterpene Acidic Photooxidation Products and New Particle Formation over Forests. Environmental Science & Technology, 33(7), 1028-1037. doi:10.1021/es9807035 |
es_ES |
dc.description.references |
Plewka, A., Gnauk, T., Brüggemann, E., & Herrmann, H. (2006). Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany. Atmospheric Environment, 40, 103-115. doi:10.1016/j.atmosenv.2005.09.090 |
es_ES |