- -

Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics

Show full item record

Gracia Calandin, LI.; Angeles, J. (2011). Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics. Proceedings of the Institution of Mechanical Engineers part C - Journal of Mechanical Engineering Science. 225(4):987-999. doi:10.1243/09544062JMES2464

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28689

Files in this item

Item Metadata

Title: Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics
Author: Gracia Calandin, Luis Ignacio Angeles, J.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Issued date:
Abstract:
A robust approach to computational kinematics intended to cope with algorithmic singularities is introduced in this article. The approach is based on the reduction of the original system of equations to a subsystem of ...[+]
Subjects: Computational kinematics , Function generation , Planar , Spherical and spatial fourbar linkages , Bivariate , Four-bar linkage , Multivariate polynomial , Numerical example , Original systems , Precision point , Robust approaches , Univariate , Algorithms , Function generators , Numerical methods , Spheres , Kinematics
Copyrigths: Reserva de todos los derechos
Source:
Proceedings of the Institution of Mechanical Engineers part C - Journal of Mechanical Engineering Science. (issn: 0954-4062 )
DOI: 10.1243/09544062JMES2464
Publisher:
SAGE Publications
Publisher version: http://pic.sagepub.com/content/225/4/987.full.pdf+html
Project ID:
Universidad Politecnica de Valencia PAID-00-09
McGill University
Thanks:
The first author acknowledges the support of Universidad Politecnica de Valencia, research project PAID-00-09. The second author acknowledges the support of McGill University by means of a James McGill Professorship.
Type: Artículo

References

Raghavan, M., & Roth, B. (1993). Inverse Kinematics of the General 6R Manipulator and Related Linkages. Journal of Mechanical Design, 115(3), 502-508. doi:10.1115/1.2919218

Lee, H. Y., Woernle, C., & Hiller, M. (1991). A Complete Solution for the Inverse Kinematic Problem of the General 6R Robot Manipulator. Journal of Mechanical Design, 113(4), 481-486. doi:10.1115/1.2912808

Innocenti, C., & Parenti-Castelli, V. (1993). Echelon form solution of direct kinematics for the general fully-parallel spherical wrist. Mechanism and Machine Theory, 28(4), 553-561. doi:10.1016/0094-114x(93)90035-t [+]
Raghavan, M., & Roth, B. (1993). Inverse Kinematics of the General 6R Manipulator and Related Linkages. Journal of Mechanical Design, 115(3), 502-508. doi:10.1115/1.2919218

Lee, H. Y., Woernle, C., & Hiller, M. (1991). A Complete Solution for the Inverse Kinematic Problem of the General 6R Robot Manipulator. Journal of Mechanical Design, 113(4), 481-486. doi:10.1115/1.2912808

Innocenti, C., & Parenti-Castelli, V. (1993). Echelon form solution of direct kinematics for the general fully-parallel spherical wrist. Mechanism and Machine Theory, 28(4), 553-561. doi:10.1016/0094-114x(93)90035-t

Gosselin, C. M., Sefrioui, J., & Richard, M. J. (1994). On the Direct Kinematics of Spherical Three-Degree-of-Freedom Parallel Manipulators of General Architecture. Journal of Mechanical Design, 116(2), 594-598. doi:10.1115/1.2919419

Alizade, R. I., & Kilit, Ö. (2005). Analytical synthesis of function generating spherical four-bar mechanism for the five precision points. Mechanism and Machine Theory, 40(7), 863-878. doi:10.1016/j.mechmachtheory.2004.12.010

Cervantes-Sánchez, J. J., Gracia, L., Rico-Martínez, J. M., Medellín-Castillo, H. I., & González-Galván, E. J. (2009). A novel and efficient kinematic synthesis approach of the spherical 4R function generator for five and six precision points. Mechanism and Machine Theory, 44(11), 2020-2037. doi:10.1016/j.mechmachtheory.2009.05.006

Angeles, J. (2007). Fundamentals of Robotic Mechanical Systems. Mechanical Engineering Series. doi:10.1007/978-0-387-34580-2

Bai, S., Hansen, M. R., & Angeles, J. (2009). A robust forward-displacement analysis of spherical parallel robots. Mechanism and Machine Theory, 44(12), 2204-2216. doi:10.1016/j.mechmachtheory.2009.07.005

Sommese, A. J., & Wampler, C. W. (2005). The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. doi:10.1142/5763

Forsythe, G. E. (1970). Pitfalls in Computation, or why a Math Book isn’t Enough. The American Mathematical Monthly, 77(9), 931. doi:10.2307/2318109

Angeles, J., Hommel, G., & Kovács, P. (Eds.). (1993). Computational Kinematics. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-8192-9

Yang, A. T., & Freudenstein, F. (1964). Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms. Journal of Applied Mechanics, 31(2), 300-308. doi:10.1115/1.3629601

Gupta, K. C., & Beloiu, A. S. (1998). Branch and circuit defect elimination in spherical four-bar linkages. Mechanism and Machine Theory, 33(5), 491-504. doi:10.1016/s0094-114x(97)00078-5

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record