Mostrar el registro sencillo del ítem
dc.contributor.author | Gracia Calandin, Luis Ignacio | es_ES |
dc.contributor.author | Angeles, J. | es_ES |
dc.date.accessioned | 2013-05-08T12:40:54Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0954-4062 | |
dc.identifier.uri | http://hdl.handle.net/10251/28689 | |
dc.description.abstract | A robust approach to computational kinematics intended to cope with algorithmic singularities is introduced in this article. The approach is based on the reduction of the original system of equations to a subsystem of bivariate equations, as opposed to the multivariate polynomial reduction leading to the characteristic univariate polynomial. The effectiveness of the approach is illustrated for the exact function-generation synthesis of planar, spherical, and spatial four-bar linkages. Some numerical examples are provided for the case of the spherical four-bar function generator with six precision points to show the benefits of the proposed method with respect to methods reported in the literature. | es_ES |
dc.description.sponsorship | The first author acknowledges the support of Universidad Politecnica de Valencia, research project PAID-00-09. The second author acknowledges the support of McGill University by means of a James McGill Professorship. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Proceedings of the Institution of Mechanical Engineers part C - Journal of Mechanical Engineering Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Computational kinematics | es_ES |
dc.subject | Function generation | es_ES |
dc.subject | Planar | es_ES |
dc.subject | Spherical and spatial fourbar linkages | es_ES |
dc.subject | Bivariate | es_ES |
dc.subject | Four-bar linkage | es_ES |
dc.subject | Multivariate polynomial | es_ES |
dc.subject | Numerical example | es_ES |
dc.subject | Original systems | es_ES |
dc.subject | Precision point | es_ES |
dc.subject | Robust approaches | es_ES |
dc.subject | Univariate | es_ES |
dc.subject | Algorithms | es_ES |
dc.subject | Function generators | es_ES |
dc.subject | Numerical methods | es_ES |
dc.subject | Spheres | es_ES |
dc.subject | Kinematics | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1243/09544062JMES2464 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-00-09/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Gracia Calandin, LI.; Angeles, J. (2011). Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics. Proceedings of the Institution of Mechanical Engineers part C - Journal of Mechanical Engineering Science. 225(4):987-999. https://doi.org/10.1243/09544062JMES2464 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://pic.sagepub.com/content/225/4/987.full.pdf+html | es_ES |
dc.description.upvformatpinicio | 987 | es_ES |
dc.description.upvformatpfin | 999 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 225 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 208915 | |
dc.contributor.funder | McGill University | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Raghavan, M., & Roth, B. (1993). Inverse Kinematics of the General 6R Manipulator and Related Linkages. Journal of Mechanical Design, 115(3), 502-508. doi:10.1115/1.2919218 | es_ES |
dc.description.references | Lee, H. Y., Woernle, C., & Hiller, M. (1991). A Complete Solution for the Inverse Kinematic Problem of the General 6R Robot Manipulator. Journal of Mechanical Design, 113(4), 481-486. doi:10.1115/1.2912808 | es_ES |
dc.description.references | Innocenti, C., & Parenti-Castelli, V. (1993). Echelon form solution of direct kinematics for the general fully-parallel spherical wrist. Mechanism and Machine Theory, 28(4), 553-561. doi:10.1016/0094-114x(93)90035-t | es_ES |
dc.description.references | Gosselin, C. M., Sefrioui, J., & Richard, M. J. (1994). On the Direct Kinematics of Spherical Three-Degree-of-Freedom Parallel Manipulators of General Architecture. Journal of Mechanical Design, 116(2), 594-598. doi:10.1115/1.2919419 | es_ES |
dc.description.references | Alizade, R. I., & Kilit, Ö. (2005). Analytical synthesis of function generating spherical four-bar mechanism for the five precision points. Mechanism and Machine Theory, 40(7), 863-878. doi:10.1016/j.mechmachtheory.2004.12.010 | es_ES |
dc.description.references | Cervantes-Sánchez, J. J., Gracia, L., Rico-Martínez, J. M., Medellín-Castillo, H. I., & González-Galván, E. J. (2009). A novel and efficient kinematic synthesis approach of the spherical 4R function generator for five and six precision points. Mechanism and Machine Theory, 44(11), 2020-2037. doi:10.1016/j.mechmachtheory.2009.05.006 | es_ES |
dc.description.references | Angeles, J. (2007). Fundamentals of Robotic Mechanical Systems. Mechanical Engineering Series. doi:10.1007/978-0-387-34580-2 | es_ES |
dc.description.references | Bai, S., Hansen, M. R., & Angeles, J. (2009). A robust forward-displacement analysis of spherical parallel robots. Mechanism and Machine Theory, 44(12), 2204-2216. doi:10.1016/j.mechmachtheory.2009.07.005 | es_ES |
dc.description.references | Sommese, A. J., & Wampler, C. W. (2005). The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. doi:10.1142/5763 | es_ES |
dc.description.references | Forsythe, G. E. (1970). Pitfalls in Computation, or why a Math Book isn’t Enough. The American Mathematical Monthly, 77(9), 931. doi:10.2307/2318109 | es_ES |
dc.description.references | Angeles, J., Hommel, G., & Kovács, P. (Eds.). (1993). Computational Kinematics. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-8192-9 | es_ES |
dc.description.references | Yang, A. T., & Freudenstein, F. (1964). Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms. Journal of Applied Mechanics, 31(2), 300-308. doi:10.1115/1.3629601 | es_ES |
dc.description.references | Gupta, K. C., & Beloiu, A. S. (1998). Branch and circuit defect elimination in spherical four-bar linkages. Mechanism and Machine Theory, 33(5), 491-504. doi:10.1016/s0094-114x(97)00078-5 | es_ES |