- -

Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics

Show simple item record

Files in this item

dc.contributor.author Gracia Calandin, Luis Ignacio es_ES
dc.contributor.author Angeles, J. es_ES
dc.date.accessioned 2013-05-08T12:40:54Z
dc.date.issued 2011
dc.identifier.issn 0954-4062
dc.identifier.uri http://hdl.handle.net/10251/28689
dc.description.abstract A robust approach to computational kinematics intended to cope with algorithmic singularities is introduced in this article. The approach is based on the reduction of the original system of equations to a subsystem of bivariate equations, as opposed to the multivariate polynomial reduction leading to the characteristic univariate polynomial. The effectiveness of the approach is illustrated for the exact function-generation synthesis of planar, spherical, and spatial four-bar linkages. Some numerical examples are provided for the case of the spherical four-bar function generator with six precision points to show the benefits of the proposed method with respect to methods reported in the literature. es_ES
dc.description.sponsorship The first author acknowledges the support of Universidad Politecnica de Valencia, research project PAID-00-09. The second author acknowledges the support of McGill University by means of a James McGill Professorship. en_EN
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers part C - Journal of Mechanical Engineering Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computational kinematics es_ES
dc.subject Function generation es_ES
dc.subject Planar es_ES
dc.subject Spherical and spatial fourbar linkages es_ES
dc.subject Bivariate es_ES
dc.subject Four-bar linkage es_ES
dc.subject Multivariate polynomial es_ES
dc.subject Numerical example es_ES
dc.subject Original systems es_ES
dc.subject Precision point es_ES
dc.subject Robust approaches es_ES
dc.subject Univariate es_ES
dc.subject Algorithms es_ES
dc.subject Function generators es_ES
dc.subject Numerical methods es_ES
dc.subject Spheres es_ES
dc.subject Kinematics es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1243/09544062JMES2464
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-00-09/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Gracia Calandin, LI.; Angeles, J. (2011). Robustness to Algorithmic Singularities and Sensitivity in Computational Kinematics. Proceedings of the Institution of Mechanical Engineers part C - Journal of Mechanical Engineering Science. 225(4):987-999. https://doi.org/10.1243/09544062JMES2464 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://pic.sagepub.com/content/225/4/987.full.pdf+html es_ES
dc.description.upvformatpinicio 987 es_ES
dc.description.upvformatpfin 999 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 225 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 208915
dc.contributor.funder McGill University es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Raghavan, M., & Roth, B. (1993). Inverse Kinematics of the General 6R Manipulator and Related Linkages. Journal of Mechanical Design, 115(3), 502-508. doi:10.1115/1.2919218 es_ES
dc.description.references Lee, H. Y., Woernle, C., & Hiller, M. (1991). A Complete Solution for the Inverse Kinematic Problem of the General 6R Robot Manipulator. Journal of Mechanical Design, 113(4), 481-486. doi:10.1115/1.2912808 es_ES
dc.description.references Innocenti, C., & Parenti-Castelli, V. (1993). Echelon form solution of direct kinematics for the general fully-parallel spherical wrist. Mechanism and Machine Theory, 28(4), 553-561. doi:10.1016/0094-114x(93)90035-t es_ES
dc.description.references Gosselin, C. M., Sefrioui, J., & Richard, M. J. (1994). On the Direct Kinematics of Spherical Three-Degree-of-Freedom Parallel Manipulators of General Architecture. Journal of Mechanical Design, 116(2), 594-598. doi:10.1115/1.2919419 es_ES
dc.description.references Alizade, R. I., & Kilit, Ö. (2005). Analytical synthesis of function generating spherical four-bar mechanism for the five precision points. Mechanism and Machine Theory, 40(7), 863-878. doi:10.1016/j.mechmachtheory.2004.12.010 es_ES
dc.description.references Cervantes-Sánchez, J. J., Gracia, L., Rico-Martínez, J. M., Medellín-Castillo, H. I., & González-Galván, E. J. (2009). A novel and efficient kinematic synthesis approach of the spherical 4R function generator for five and six precision points. Mechanism and Machine Theory, 44(11), 2020-2037. doi:10.1016/j.mechmachtheory.2009.05.006 es_ES
dc.description.references Angeles, J. (2007). Fundamentals of Robotic Mechanical Systems. Mechanical Engineering Series. doi:10.1007/978-0-387-34580-2 es_ES
dc.description.references Bai, S., Hansen, M. R., & Angeles, J. (2009). A robust forward-displacement analysis of spherical parallel robots. Mechanism and Machine Theory, 44(12), 2204-2216. doi:10.1016/j.mechmachtheory.2009.07.005 es_ES
dc.description.references Sommese, A. J., & Wampler, C. W. (2005). The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. doi:10.1142/5763 es_ES
dc.description.references Forsythe, G. E. (1970). Pitfalls in Computation, or why a Math Book isn’t Enough. The American Mathematical Monthly, 77(9), 931. doi:10.2307/2318109 es_ES
dc.description.references Angeles, J., Hommel, G., & Kovács, P. (Eds.). (1993). Computational Kinematics. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-8192-9 es_ES
dc.description.references Yang, A. T., & Freudenstein, F. (1964). Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms. Journal of Applied Mechanics, 31(2), 300-308. doi:10.1115/1.3629601 es_ES
dc.description.references Gupta, K. C., & Beloiu, A. S. (1998). Branch and circuit defect elimination in spherical four-bar linkages. Mechanism and Machine Theory, 33(5), 491-504. doi:10.1016/s0094-114x(97)00078-5 es_ES


This item appears in the following Collection(s)

Show simple item record