- -

A wireless Sensor Network that use Image Processing for Vineyard Monitoring

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A wireless Sensor Network that use Image Processing for Vineyard Monitoring

Show simple item record

Files in this item

dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Bosch Roig, Ignacio es_ES
dc.contributor.author Sendra Compte, Sandra es_ES
dc.contributor.author Serrano Cartagena, Arturo es_ES
dc.date.accessioned 2013-05-14T10:59:22Z
dc.date.available 2013-05-14T10:59:22Z
dc.date.issued 2011
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/28827
dc.description.abstract The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis. © 2011 by the authors; licensee MDPI, Basel, Switzerland. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Image processing es_ES
dc.subject Image sensor es_ES
dc.subject Vineyard monitoring es_ES
dc.subject Wireless sensor network es_ES
dc.subject Agriculture es_ES
dc.subject Algorithm es_ES
dc.subject Article es_ES
dc.subject Artificial neural network es_ES
dc.subject Computer network es_ES
dc.subject Environmental monitoring es_ES
dc.subject Equipment design es_ES
dc.subject Instrumentation es_ES
dc.subject Methodology es_ES
dc.subject Physiology es_ES
dc.subject Reproducibility es_ES
dc.subject Signal processing es_ES
dc.subject Telemetry es_ES
dc.subject Theoretical model es_ES
dc.subject Vitis es_ES
dc.subject Wireless communication es_ES
dc.subject Algorithms es_ES
dc.subject Computer Communication Networks es_ES
dc.subject Image Processing, Computer-Assisted es_ES
dc.subject Models, Theoretical es_ES
dc.subject Neural Networks (Computer) es_ES
dc.subject Reproducibility of Results es_ES
dc.subject Signal Processing, Computer-Assisted es_ES
dc.subject Wireless Technology es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A wireless Sensor Network that use Image Processing for Vineyard Monitoring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s110606165
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Lloret, J.; Bosch Roig, I.; Sendra Compte, S.; Serrano Cartagena, A. (2011). A wireless Sensor Network that use Image Processing for Vineyard Monitoring. Sensors. 11(6):6165-6196. doi:10.3390/s110606165 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s110606165 es_ES
dc.description.upvformatpinicio 6165 es_ES
dc.description.upvformatpfin 6196 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 213890
dc.identifier.pmid 22163948 en_EN
dc.identifier.pmcid PMC3231437 en_EN
dc.description.references http://news.reseau-concept.net/images/oiv_es/Client/Communique_Stats_Tbilissi_ES.pdf es_ES
dc.description.references http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31968L0193:ES:NOT es_ES
dc.description.references http://www.europarl.europa.eu/meetdocs/2009_2014/documents/com/com_com%282010%290359_/com_com%282010%290359_en.pdf es_ES
dc.description.references http://www.legislation.nsw.gov.au/sessionalview/sessional/act/1901-14.pdf es_ES
dc.description.references http://www.legislation.govt.nz/act/public/1993/0095/latest/DLM314623.html es_ES
dc.description.references Gubler, W. D., Baumgartner, K., Browne, G. T., Eskalen, A., Latham, S. R., Petit, E., & Bayramian, L. A. (2004). Root diseases of grapevines in California and their control. Australasian Plant Pathology, 33(2), 157. doi:10.1071/ap04019 es_ES
dc.description.references Van den Driessche, R. (1974). Prediction of mineral nutrient status of trees by foliar analysis. The Botanical Review, 40(3), 347-394. doi:10.1007/bf02860066 es_ES
dc.description.references Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors, 9(11), 8722-8747. doi:10.3390/s91108722 es_ES
dc.description.references Chen, Y.-R., Chao, K., & Kim, M. S. (2002). Machine vision technology for agricultural applications. Computers and Electronics in Agriculture, 36(2-3), 173-191. doi:10.1016/s0168-1699(02)00100-x es_ES
dc.description.references Macedo-Cruz, A., Pajares, G., Santos, M., & Villegas-Romero, I. (2011). Digital Image Sensor-Based Assessment of the Status of Oat (Avena sativa L.) Crops after Frost Damage. Sensors, 11(6), 6015-6036. doi:10.3390/s110606015 es_ES
dc.description.references Liu, L., Ma, H., & Zhang, X. (2011). Coverage analysis for target localization in camera sensor networks. Wireless Communications and Mobile Computing, 12(14), 1239-1250. doi:10.1002/wcm.1051 es_ES
dc.description.references Lloret, J., Sendra, S., Coll, H., & Garcia, M. (2009). Saving Energy in Wireless Local Area Sensor Networks. The Computer Journal, 53(10), 1658-1673. doi:10.1093/comjnl/bxp112 es_ES
dc.description.references Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6 es_ES
dc.description.references Recommendation UIT-R P.838-3. Specific Attenuation Model for Rain for Use in Prediction Methodshttp://www.itu.int/rec/R-REC-P.838/en/ es_ES
dc.description.references Recommendation UIT-R PN.837-5. Characteristics of Precipitation for Propagation Modelinghttp://www.itu.int/md/R07-WP3J-C-0014/en es_ES
dc.description.references Aurenhammer, F. (1991). Voronoi diagrams---a survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3), 345-405. doi:10.1145/116873.116880 es_ES
dc.description.references Circular Segment Wikipediahttp://en.wikipedia.org/wiki/Circular_segment es_ES
dc.description.references OpenWRT Websitehttp://openwrt.org/ es_ES
dc.description.references Open WRT List of Supported Deviceshttp://wiki.openwrt.org/toh/start es_ES
dc.description.references Atheros AR7161 Information, Atheros Websitehttp://www.atheros.com/networking/brand.php?brand=4&product=68 es_ES
dc.description.references Hercules Classic Webcam Information in Hercules Websitehttp://www.hercules.com/es/webcam/bdd/p/17/hercules-classic-webcam/ es_ES
dc.description.references QuickCam Information in Logitech Websitehttp://logitech-es-emea.custhelp.com/app/answers/detail/a_id/1253/section/troubleshoot/crid/435/lt_product_id/269/tabs/1,3,2,5/cl/es,es/kw/ es_ES
dc.description.references Creative WebCam NX Pro Information in Creative Websitehttp://en.europe.creative.com/products/productarchive.asp?category=218&subcategory=219&product=628&nav=1&listby= es_ES
dc.description.references Creative WebCam Instant Information in Creative Websitehttp://es.creative.com/products/productarchive.asp?category=269&subcategory=293&product=10410&nav=1&listby= es_ES
dc.description.references A4tech PKS-635K information in a4tech websitehttp://www.a4tech.de/?q=node/166 es_ES
dc.description.references Bales, M. R., Forsthoefel, D., Valentine, B., Wills, D. S., & Wills, L. M. (2011). BigBackground-Based Illumination Compensation for Surveillance Video. EURASIP Journal on Image and Video Processing, 2011, 1-22. doi:10.1155/2011/171363 es_ES
dc.description.references Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1993). <title>Plant species identification, size, and enumeration using machine vision techniques on near-binary images</title>. Optics in Agriculture and Forestry. doi:10.1117/12.144030 es_ES
dc.description.references Garcia, M., & Lloret, J. (2009). A Cooperative Group-Based Sensor Network for Environmental Monitoring. Cooperative Design, Visualization, and Engineering, 276-279. doi:10.1007/978-3-642-04265-2_41 es_ES


This item appears in the following Collection(s)

Show simple item record