- -

Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors

Mostrar el registro completo del ítem

Montagut, Y.; García Narbón, JV.; Jiménez Jiménez, Y.; March Iborra, MDC.; Montoya Baides, Á.; Arnau Vives, A. (2011). Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors. Sensors. 11(5):4702-4720. https://doi.org/10.3390/s110504702

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28829

Ficheros en el ítem

Metadatos del ítem

Título: Validation of a Phase-Mass Characterization Concept and Interface for Acoustic Biosensors
Autor: Montagut, Yeison García Narbón, José Vicente Jiménez Jiménez, Yolanda March Iborra, Mª Del Carmen Montoya Baides, Ángel Arnau Vives, Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Fecha difusión:
Resumen:
Acoustic wave resonator techniques are widely used in in-liquid biochemical applications. The main challenges remaining are the improvement of sensitivity and limit of detection, as well as multianalysis capabilities and ...[+]
Palabras clave: Acoustic biosensors , High fundamental frequency QCM , High resolution , Microbalance , Phase characterization , Sensitivity , Acoustics , Article , Genetic procedures , Instrumentation , Methodology , Quartz crystal microbalance , Biosensing Techniques , Quartz Crystal Microbalance Techniques
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (issn: 1424-8220 )
DOI: 10.3390/s110504702
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/s110504702
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2009-13511/ES/Inmunosensor Piezoelectrico De Alta Frecuencia Para La Deteccion De Bisfenol-A Y Ftalatos En Alimentos Envasados/
Agradecimientos:
The authors are grateful to the Spanish Ministry of Science and Technology the financial support to this research under contract reference AGL2009-13511, and to the company Advanced Wave Sensors S.L. (www.awsensors.com) ...[+]
Tipo: Artículo

References

Cote, G. L., Lec, R. M., & Pishko, M. V. (2003). Emerging biomedical sensing technologies and their applications. IEEE Sensors Journal, 3(3), 251-266. doi:10.1109/jsen.2003.814656

Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937

Keiji Kanazawa, K., & Gordon, J. G. (1985). The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta, 175, 99-105. doi:10.1016/s0003-2670(00)82721-x [+]
Cote, G. L., Lec, R. M., & Pishko, M. V. (2003). Emerging biomedical sensing technologies and their applications. IEEE Sensors Journal, 3(3), 251-266. doi:10.1109/jsen.2003.814656

Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937

Keiji Kanazawa, K., & Gordon, J. G. (1985). The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta, 175, 99-105. doi:10.1016/s0003-2670(00)82721-x

Voinova, M. V., Jonson, M., & Kasemo, B. (2002). ‘Missing mass’ effect in biosensor’s QCM applications. Biosensors and Bioelectronics, 17(10), 835-841. doi:10.1016/s0956-5663(02)00050-7

Kankare, J. (2002). Sauerbrey Equation of Quartz Crystal Microbalance in Liquid Medium. Langmuir, 18(18), 7092-7094. doi:10.1021/la025911w

Arnau, A., Jimenez, Y., Fernández, R., Torres, R., Otero, M., & Calvo, E. J. (2006). Viscoelastic Characterization of Electrochemically Prepared Conducting Polymer Films by Impedance Analysis at Quartz Crystal. Journal of The Electrochemical Society, 153(7), C455. doi:10.1149/1.2195893

Lin, Z., Yip, C. M., Joseph, I. S., & Ward, M. D. (1993). Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Analytical Chemistry, 65(11), 1546-1551. doi:10.1021/ac00059a011

Janshoff, A., Galla, H.-J., & Steinem, C. (2000). Piezoelectric Mass-Sensing Devices as Biosensors—An Alternative to Optical Biosensors? Angewandte Chemie, 39(22), 4004-4032. doi:10.1002/1521-3773(20001117)39:22<4004::aid-anie4004>3.0.co;2-2

Furtado, L. M., Su, H., Thompson, M., Mack, D. P., & Hayward, G. L. (1999). Interactions of HIV-1 TAR RNA with Tat-Derived Peptides Discriminated by On-Line Acoustic Wave Detector. Analytical Chemistry, 71(6), 1167-1175. doi:10.1021/ac980880o

Ben-Dov, I., Willner, I., & Zisman, E. (1997). Piezoelectric Immunosensors for Urine Specimens ofChlamydia trachomatisEmploying Quartz Crystal Microbalance Microgravimetric Analyses. Analytical Chemistry, 69(17), 3506-3512. doi:10.1021/ac970216s

Höök, F., Ray, A., Nordén, B., & Kasemo, B. (2001). Characterization of PNA and DNA Immobilization and Subsequent Hybridization with DNA Using Acoustic-Shear-Wave Attenuation Measurements. Langmuir, 17(26), 8305-8312. doi:10.1021/la0107704

Hengerer, A., Kösslinger, C., Decker, J., Hauck, S., Queitsch, I., Wolf, H., & Dübel, S. (1999). Determination of Phage Antibody Affinities to Antigen by a Microbalance Sensor System. BioTechniques, 26(5), 956-964. doi:10.2144/99265rr05

Zhou, X., Liu, L., Hu, M., Wang, L., & Hu, J. (2002). Detection of hepatitis B virus by piezoelectric biosensor. Journal of Pharmaceutical and Biomedical Analysis, 27(1-2), 341-345. doi:10.1016/s0731-7085(01)00538-6

Fung, Y. S., & Wong, Y. Y. (2001). Self-Assembled Monolayers as the Coating in a Quartz Piezoelectric Crystal Immunosensor To Detect Salmonella in Aqueous Solution. Analytical Chemistry, 73(21), 5302-5309. doi:10.1021/ac010655y

Richert, L., Lavalle, P., Vautier, D., Senger, B., Stoltz, J.-F., Schaaf, P., … Picart, C. (2002). Cell Interactions with Polyelectrolyte Multilayer Films. Biomacromolecules, 3(6), 1170-1178. doi:10.1021/bm0255490

Stobiecka, M., Cieśla, J., Janowska, B., Tudek, B., & Radecka, H. (2007). Piezoelectric Sensor for Determination of Genetically Modified Soybean Roundup Ready (R) in Samples not Amplified by PCR. Sensors, 7(8), 1462-1479. doi:10.3390/s7081462

Ogi, H., Naga, H., Fukunishi, Y., Hirao, M., & Nishiyama, M. (2009). 170-MHz Electrodeless Quartz Crystal Microbalance Biosensor: Capability and Limitation of Higher Frequency Measurement. Analytical Chemistry, 81(19), 8068-8073. doi:10.1021/ac901267b

Tatsuma, T., Watanabe, Y., Oyama, N., Kitakizaki, K., & Haba, M. (1999). Multichannel Quartz Crystal Microbalance. Analytical Chemistry, 71(17), 3632-3636. doi:10.1021/ac9904260

Bjurstrom, J., Wingqvist, G., & Katardjiev, I. (2006). Synthesis of textured thin piezoelectric AlN films with a nonzero C-axis mean tilt for the fabrication of shear mode resonators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(11), 2095-2100. doi:10.1109/tuffc.2006.149

Gabl, R., Feucht, H.-D., Zeininger, H., Eckstein, G., Schreiter, M., Primig, R., … Wersing, W. (2004). First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosensors and Bioelectronics, 19(6), 615-620. doi:10.1016/s0956-5663(03)00259-8

Wingqvist, G., Bjurström, J., Liljeholm, L., Yantchev, V., & Katardjiev, I. (2007). Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sensors and Actuators B: Chemical, 123(1), 466-473. doi:10.1016/j.snb.2006.09.028

Wingqvist, G., Yantchev, V., & Katardjiev, I. (2008). Mass sensitivity of multilayer thin film resonant BAW sensors. Sensors and Actuators A: Physical, 148(1), 88-95. doi:10.1016/j.sna.2008.07.023

Weber, J., Albers, W. M., Tuppurainen, J., Link, M., Gabl, R., Wersing, W., & Schreiter, M. (2006). Shear mode FBARs as highly sensitive liquid biosensors. Sensors and Actuators A: Physical, 128(1), 84-88. doi:10.1016/j.sna.2006.01.005

Wingqvist, G., Anderson, H., Lennartsson, C., Weissbach, T., Yantchev, V., & Lloyd Spetz, A. (2009). On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance. Biosensors and Bioelectronics, 24(11), 3387-3390. doi:10.1016/j.bios.2009.04.021

Nirschl, M., Blüher, A., Erler, C., Katzschner, B., Vikholm-Lundin, I., Auer, S., … Mertig, M. (2009). Film bulk acoustic resonators for DNA and protein detection and investigation of in vitro bacterial S-layer formation. Sensors and Actuators A: Physical, 156(1), 180-184. doi:10.1016/j.sna.2009.02.021

Bjurström, J., Wingqvist, G., Yantchev, V., & Katardjiev, I. (2007). Temperature compensation of liquid FBAR sensors. Journal of Micromechanics and Microengineering, 17(3), 651-658. doi:10.1088/0960-1317/17/3/030

Länge, K., Rapp, B. E., & Rapp, M. (2008). Surface acoustic wave biosensors: a review. Analytical and Bioanalytical Chemistry, 391(5), 1509-1519. doi:10.1007/s00216-008-1911-5

Gronewold, T. M. A. (2007). Surface acoustic wave sensors in the bioanalytical field: Recent trends and challenges. Analytica Chimica Acta, 603(2), 119-128. doi:10.1016/j.aca.2007.09.056

Fu, Y. Q., Luo, J. K., Du, X. Y., Flewitt, A. J., Li, Y., Markx, G. H., … Milne, W. I. (2010). Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sensors and Actuators B: Chemical, 143(2), 606-619. doi:10.1016/j.snb.2009.10.010

Rocha-Gaso, M.-I., March-Iborra, C., Montoya-Baides, Á., & Arnau-Vives, A. (2009). Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review. Sensors, 9(7), 5740-5769. doi:10.3390/s90705740

Josse, F., Bender, F., & Cernosek, R. W. (2001). Guided Shear Horizontal Surface Acoustic Wave Sensors for Chemical and Biochemical Detection in Liquids. Analytical Chemistry, 73(24), 5937-5944. doi:10.1021/ac010859e

McHale, G. (2003). Generalized concept of shear horizontal acoustic plate mode and Love wave sensors. Measurement Science and Technology, 14(11), 1847-1853. doi:10.1088/0957-0233/14/11/001

Lindner, G. (2008). Sensors and actuators based on surface acoustic waves propagating along solid–liquid interfaces. Journal of Physics D: Applied Physics, 41(12), 123002. doi:10.1088/0022-3727/41/12/123002

Jakoby, B., & Vellekoop, M. J. (1997). Properties of Love waves: applications in sensors. Smart Materials and Structures, 6(6), 668-679. doi:10.1088/0964-1726/6/6/003

Bisoffi, M., Hjelle, B., Brown, D. C., Branch, D. W., Edwards, T. L., Brozik, S. M., … Larson, R. S. (2008). Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosensors and Bioelectronics, 23(9), 1397-1403. doi:10.1016/j.bios.2007.12.016

Andrä, J., Böhling, A., Gronewold, T. M. A., Schlecht, U., Perpeet, M., & Gutsmann, T. (2008). Surface Acoustic Wave Biosensor as a Tool to Study the Interaction of Antimicrobial Peptides with Phospholipid and Lipopolysaccharide Model Membranes. Langmuir, 24(16), 9148-9153. doi:10.1021/la801252t

Moll, N., Pascal, E., Dinh, D. H., Pillot, J.-P., Bennetau, B., Rebière, D., … Déjous, C. (2007). A Love wave immunosensor for whole E. coli bacteria detection using an innovative two-step immobilisation approach. Biosensors and Bioelectronics, 22(9-10), 2145-2150. doi:10.1016/j.bios.2006.09.032

Branch, D. W., & Brozik, S. M. (2004). Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36°YX LiTaO3. Biosensors and Bioelectronics, 19(8), 849-859. doi:10.1016/j.bios.2003.08.020

Tamarin, O., Comeau, S., Déjous, C., Moynet, D., Rebière, D., Bezian, J., & Pistré, J. (2003). Real time device for biosensing: design of a bacteriophage model using love acoustic waves. Biosensors and Bioelectronics, 18(5-6), 755-763. doi:10.1016/s0956-5663(03)00022-8

Howe, E., & Harding, G. (2000). A comparison of protocols for the optimisation of detection of bacteria using a surface acoustic wave (SAW) biosensor. Biosensors and Bioelectronics, 15(11-12), 641-649. doi:10.1016/s0956-5663(00)00116-0

Francis, L. A., Friedt, J.-M., & Bertrand, P. (2005). Influence of electromagnetic interferences on the mass sensitivity of Love mode surface acoustic wave sensors. Sensors and Actuators A: Physical, 123-124, 360-369. doi:10.1016/j.sna.2005.03.030

Harding, G. L. (2001). Mass sensitivity of Love-mode acoustic sensors incorporating silicon dioxide and silicon-oxy-fluoride guiding layers. Sensors and Actuators A: Physical, 88(1), 20-28. doi:10.1016/s0924-4247(00)00491-x

Wang, Z., Cheeke, J. D. N., & Jen, C. K. (1994). Sensitivity analysis for Love mode acoustic gravimetric sensors. Applied Physics Letters, 64(22), 2940-2942. doi:10.1063/1.111976

Kalantar-Zadeh, K., Wlodarski, W., Chen, Y. Y., Fry, B. N., & Galatsis, K. (2003). Novel Love mode surface acoustic wave based immunosensors. Sensors and Actuators B: Chemical, 91(1-3), 143-147. doi:10.1016/s0925-4005(03)00079-0

Arnau, A., Montagut, Y., García, J. V., & Jiménez, Y. (2009). A different point of view on the sensitivity of quartz crystal microbalance sensors. Measurement Science and Technology, 20(12), 124004. doi:10.1088/0957-0233/20/12/124004

March, C., Manclús, J. J., Jiménez, Y., Arnau, A., & Montoya, A. (2009). A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices. Talanta, 78(3), 827-833. doi:10.1016/j.talanta.2008.12.058

Arnau, A. (2008). A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids. Sensors, 8(1), 370-411. doi:10.3390/s8010370

Eichelbaum, F., Borngräber, R., Schröder, J., Lucklum, R., & Hauptmann, P. (1999). Interface circuits for quartz-crystal-microbalance sensors. Review of Scientific Instruments, 70(5), 2537-2545. doi:10.1063/1.1149788

Schröder, J., Borngräber, R., Lucklum, R., & Hauptmann, P. (2001). Network analysis based interface electronics for quartz crystal microbalance. Review of Scientific Instruments, 72(6), 2750-2755. doi:10.1063/1.1370560

Rodahl, M., & Kasemo, B. (1996). A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Review of Scientific Instruments, 67(9), 3238-3241. doi:10.1063/1.1147494

Rodahl, M., & Kasemo, B. (1996). Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode. Sensors and Actuators B: Chemical, 37(1-2), 111-116. doi:10.1016/s0925-4005(97)80077-9

Barnes, C. (1992). Some new concepts on factors influencing the operational frequency of liquid-immersed quartz microbalances. Sensors and Actuators A: Physical, 30(3), 197-202. doi:10.1016/0924-4247(92)80120-r

Borngraber, R., Schroder, J., Lucklum, R., & Hauptmann, P. (2002). Is an oscillator-based measurement adequate in a liquid environment? IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 49(9), 1254-1259. doi:10.1109/tuffc.2002.1041542

Ehahoun, H., Gabrielli, C., Keddam, M., Perrot, H., & Rousseau, P. (2002). Performances and Limits of a Parallel Oscillator for Electrochemical Quartz Crystal Microbalances. Analytical Chemistry, 74(5), 1119-1127. doi:10.1021/ac010883s

Martin, S. J., Spates, J. J., Wessendorf, K. O., Schneider, T. W., & Huber, R. J. (1997). Resonator/Oscillator Response to Liquid Loading. Analytical Chemistry, 69(11), 2050-2054. doi:10.1021/ac961194x

Ferrari, V., Marioli, D., & Taroni, A. (2001). Improving the accuracy and operating range of quartz microbalance sensors by a purposely designed oscillator circuit. IEEE Transactions on Instrumentation and Measurement, 50(5), 1119-1122. doi:10.1109/19.963169

Arnau, A., Sogorb, T., & Jiménez, Y. (2002). Circuit for continuous motional series resonant frequency and motional resistance monitoring of quartz crystal resonators by parallel capacitance compensation. Review of Scientific Instruments, 73(7), 2724-2737. doi:10.1063/1.1484254

Jakoby, B., Art, G., & Bastemeijer, J. (2005). Novel analog readout electronics for microacoustic thickness shear-mode sensors. IEEE Sensors Journal, 5(5), 1106-1111. doi:10.1109/jsen.2005.844330

Ferrari, M., Ferrari, V., Marioli, D., Taroni, A., Suman, M., & Dalcanale, E. (2006). In-Liquid Sensing of Chemical Compounds by QCM Sensors Coupled With High-Accuracy ACC Oscillator. IEEE Transactions on Instrumentation and Measurement, 55(3), 828-834. doi:10.1109/tim.2006.873792

Ferrari, M., Ferrari, V., & Kanazawa, K. K. (2008). Dual-harmonic oscillator for quartz crystal resonator sensors. Sensors and Actuators A: Physical, 145-146, 131-138. doi:10.1016/j.sna.2007.10.087

Riesch, C., & Jakoby, B. (2007). Novel Readout Electronics for Thickness Shear-Mode Liquid Sensors Compensating for Spurious Conductivity and Capacitances. IEEE Sensors Journal, 7(3), 464-469. doi:10.1109/jsen.2007.891931

Arnau, A., García, J. V., Jimenez, Y., Ferrari, V., & Ferrari, M. (2008). Improved electronic interfaces forAT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions. Review of Scientific Instruments, 79(7), 075110. doi:10.1063/1.2960571

Torres, R., Jimenez, Y., Arnau, A., Gabrielli, C., Joiret, S., Perrot, H., … Wang, X. (2010). High frequency mass transfer responses with polyaniline modified electrodes by using new ac-electrogravimetry device. Electrochimica Acta, 55(21), 6308-6312. doi:10.1016/j.electacta.2010.02.009

Barnes, C. (1991). Development of quartz crystal oscillators for under-liquid sensing. Sensors and Actuators A: Physical, 29(1), 59-69. doi:10.1016/0924-4247(91)80032-k

Auge, J., Hauptmann, P., Eichelbaum, F., & Rösler, S. (1994). Quartz crystal microbalance sensor in liquids. Sensors and Actuators B: Chemical, 19(1-3), 518-522. doi:10.1016/0925-4005(93)00983-6

Auge, J., Hauptmann, P., Hartmann, J., Rösler, S., & Lucklum, R. (1995). New design for QCM sensors in liquids. Sensors and Actuators B: Chemical, 24(1-3), 43-48. doi:10.1016/0925-4005(95)85010-4

Chagnard, C., Gilbert, P., Watkins, A. N., Beeler, T., & Paul, D. W. (1996). An electronic oscillator with automatic gain control: EQCM applications. Sensors and Actuators B: Chemical, 32(2), 129-136. doi:10.1016/0925-4005(96)80121-3

Rodriguez-Pardo, L., Fariña, J., Gabrielli, C., Perrot, H., & Brendel, R. (2004). Resolution in quartz crystal oscillator circuits for high sensitivity microbalance sensors in damping media. Sensors and Actuators B: Chemical, 103(1-2), 318-324. doi:10.1016/j.snb.2004.04.060

Rodriguez-Pardo, L., Fariña, J., Gabrielli, C., Perrot, H., & Brendel, R. (2006). Quartz crystal oscillator circuit for high resolution microgravimetric sensors in fluids. Electronics Letters, 42(18), 1065. doi:10.1049/el:20061854

Uttenthaler, E., Schräml, M., Mandel, J., & Drost, S. (2001). Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosensors and Bioelectronics, 16(9-12), 735-743. doi:10.1016/s0956-5663(01)00220-2

Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., & Büttgenbach, S. (2001). Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sensors and Actuators B: Chemical, 76(1-3), 47-57. doi:10.1016/s0925-4005(01)00567-6

Sagmeister, B. P., Graz, I. M., Schwödiauer, R., Gruber, H., & Bauer, S. (2009). User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators. Biosensors and Bioelectronics, 24(8), 2643-2648. doi:10.1016/j.bios.2009.01.023

Pax, M., Rieger, J., Eibl, R. H., Thielemann, C., & Johannsmann, D. (2005). Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. The Analyst, 130(11), 1474. doi:10.1039/b504302f

Abad, A., Primo, J., & Montoya, A. (1997). Development of an Enzyme-Linked Immunosorbent Assay to Carbaryl. 1. Antibody Production from Several Haptens and Characterization in Different Immunoassay Formats. Journal of Agricultural and Food Chemistry, 45(4), 1486-1494. doi:10.1021/jf9506904

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem