Westervelt, R. M. (2008). APPLIED PHYSICS: Graphene Nanoelectronics. Science, 320(5874), 324-325. doi:10.1126/science.1156936
Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007
Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078b
[+]
Westervelt, R. M. (2008). APPLIED PHYSICS: Graphene Nanoelectronics. Science, 320(5874), 324-325. doi:10.1126/science.1156936
Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007
Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078b
An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h
Liao, G., Chen, S., Quan, X., Yu, H., & Zhao, H. (2012). Graphene oxide modified g-C3N4hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem., 22(6), 2721-2726. doi:10.1039/c1jm13490f
Štengl, V., Popelková, D., & Vláčil, P. (2011). TiO2–Graphene Nanocomposite as High Performace Photocatalysts. The Journal of Physical Chemistry C, 115(51), 25209-25218. doi:10.1021/jp207515z
Zheng, Y., Liu, J., Liang, J., Jaroniec, M., & Qiao, S. Z. (2012). Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science, 5(5), 6717. doi:10.1039/c2ee03479d
Ning, G., Fan, Z., Wang, G., Gao, J., Qian, W., & Wei, F. (2011). Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chemical Communications, 47(21), 5976. doi:10.1039/c1cc11159k
Machado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catal. Sci. Technol., 2(1), 54-75. doi:10.1039/c1cy00361e
Pyun, J. (2010). Graphenoxid als Katalysator: Kohlenstoffmaterialien in Anwendungen jenseits der Nanotechnologie. Angewandte Chemie, 123(1), 46-48. doi:10.1002/ange.201003897
Pyun, J. (2010). Graphene Oxide as Catalyst: Application of Carbon Materials beyond Nanotechnology. Angewandte Chemie International Edition, 50(1), 46-48. doi:10.1002/anie.201003897
Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g
Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017
Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). Graphite Oxide as an Auto-Tandem Oxidation-Hydration-Aldol Coupling Catalyst. Advanced Synthesis & Catalysis, 353(4), 528-532. doi:10.1002/adsc.201000748
Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j
Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). C–H oxidation using graphite oxide. Tetrahedron, 67(24), 4431-4434. doi:10.1016/j.tet.2011.02.065
Dreyer, D. R., Jarvis, K. A., Ferreira, P. J., & Bielawski, C. W. (2011). Graphite Oxide as a Dehydrative Polymerization Catalyst: A One-Step Synthesis of Carbon-Reinforced Poly(phenylene methylene) Composites. Macromolecules, 44(19), 7659-7667. doi:10.1021/ma201306x
Dreyer, D. R., Jia, H.-P., & Bielawski, C. W. (2010). Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angewandte Chemie, 122(38), 6965-6968. doi:10.1002/ange.201002160
Liu, F., Sun, J., Zhu, L., Meng, X., Qi, C., & Xiao, F.-S. (2012). Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. Journal of Materials Chemistry, 22(12), 5495. doi:10.1039/c2jm16608a
Dhakshinamoorthy, A., Alvaro, M., Concepción, P., Fornés, V., & Garcia, H. (2012). Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chemical Communications, 48(44), 5443. doi:10.1039/c2cc31385e
Li, X., Jiang, Y., Shuai, L., Wang, L., Meng, L., & Mu, X. (2012). Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J. Mater. Chem., 22(4), 1283-1289. doi:10.1039/c1jm12954f
Bradder, P., Ling, S. K., Wang, S., & Liu, S. (2011). Dye Adsorption on Layered Graphite Oxide. Journal of Chemical & Engineering Data, 56(1), 138-141. doi:10.1021/je101049g
Gao, Y., Ma, D., Wang, C., Guan, J., & Bao, X. (2011). Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun., 47(8), 2432-2434. doi:10.1039/c0cc04420b
Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806-4814. doi:10.1021/nn1006368
[-]