- -

Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Amarajothi, Dhakshina Moorthy es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Puche, Marta es_ES
dc.contributor.author Fornes Seguí, Vicente es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2013-06-10T12:03:39Z
dc.date.issued 2012
dc.identifier.issn 1867-3880
dc.identifier.uri http://hdl.handle.net/10251/29571
dc.description.abstract [EN] Graphene oxide obtained through the standard Hummers oxidation of graphite and subsequent exfoliation promotes acetalization of aldehydes in methanol. It is a highly efficient reusable heterogeneous catalyst because of its advantages of absence of transition metals, sustainable resources, and high activity, large surface area, and accessibility of active sites. Analytical and spectroscopic data suggest that the sulfate groups introduced spontaneously during Hummers en_EN
dc.description.sponsorship The authors gratefully acknowledge the Spanish Ministry of Competitivity (CTQ 2009-15689 and Consolider Multicat) for financial support. en_EN
dc.language Inglés es_ES
dc.publisher WILEY-VCH Verlag GmbH & Co. KGaA, es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acetalization es_ES
dc.subject Acid catalysis es_ES
dc.subject Graphene oxide es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Sustainable processes es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cctc.201200461
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-15689/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Amarajothi, DM.; Alvaro Rodríguez, MM.; Puche, M.; Fornes Seguí, V.; García Gómez, H. (2012). Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature. ChemCatChem. 4(12):2026-2030. https://doi.org/10.1002/cctc.201200461 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/cctc.201200461 es_ES
dc.description.upvformatpinicio 2026 es_ES
dc.description.upvformatpfin 2030 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 240544
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Westervelt, R. M. (2008). APPLIED PHYSICS: Graphene Nanoelectronics. Science, 320(5874), 324-325. doi:10.1126/science.1156936 es_ES
dc.description.references Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007 es_ES
dc.description.references Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078b es_ES
dc.description.references An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h es_ES
dc.description.references Liao, G., Chen, S., Quan, X., Yu, H., & Zhao, H. (2012). Graphene oxide modified g-C3N4hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem., 22(6), 2721-2726. doi:10.1039/c1jm13490f es_ES
dc.description.references Štengl, V., Popelková, D., & Vláčil, P. (2011). TiO2–Graphene Nanocomposite as High Performace Photocatalysts. The Journal of Physical Chemistry C, 115(51), 25209-25218. doi:10.1021/jp207515z es_ES
dc.description.references Zheng, Y., Liu, J., Liang, J., Jaroniec, M., & Qiao, S. Z. (2012). Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science, 5(5), 6717. doi:10.1039/c2ee03479d es_ES
dc.description.references Ning, G., Fan, Z., Wang, G., Gao, J., Qian, W., & Wei, F. (2011). Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chemical Communications, 47(21), 5976. doi:10.1039/c1cc11159k es_ES
dc.description.references Machado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catal. Sci. Technol., 2(1), 54-75. doi:10.1039/c1cy00361e es_ES
dc.description.references Pyun, J. (2010). Graphenoxid als Katalysator: Kohlenstoffmaterialien in Anwendungen jenseits der Nanotechnologie. Angewandte Chemie, 123(1), 46-48. doi:10.1002/ange.201003897 es_ES
dc.description.references Pyun, J. (2010). Graphene Oxide as Catalyst: Application of Carbon Materials beyond Nanotechnology. Angewandte Chemie International Edition, 50(1), 46-48. doi:10.1002/anie.201003897 es_ES
dc.description.references Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g es_ES
dc.description.references Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017 es_ES
dc.description.references Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). Graphite Oxide as an Auto-Tandem Oxidation-Hydration-Aldol Coupling Catalyst. Advanced Synthesis & Catalysis, 353(4), 528-532. doi:10.1002/adsc.201000748 es_ES
dc.description.references Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j es_ES
dc.description.references Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). C–H oxidation using graphite oxide. Tetrahedron, 67(24), 4431-4434. doi:10.1016/j.tet.2011.02.065 es_ES
dc.description.references Dreyer, D. R., Jarvis, K. A., Ferreira, P. J., & Bielawski, C. W. (2011). Graphite Oxide as a Dehydrative Polymerization Catalyst: A One-Step Synthesis of Carbon-Reinforced Poly(phenylene methylene) Composites. Macromolecules, 44(19), 7659-7667. doi:10.1021/ma201306x es_ES
dc.description.references Dreyer, D. R., Jia, H.-P., & Bielawski, C. W. (2010). Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angewandte Chemie, 122(38), 6965-6968. doi:10.1002/ange.201002160 es_ES
dc.description.references Liu, F., Sun, J., Zhu, L., Meng, X., Qi, C., & Xiao, F.-S. (2012). Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. Journal of Materials Chemistry, 22(12), 5495. doi:10.1039/c2jm16608a es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Concepción, P., Fornés, V., & Garcia, H. (2012). Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chemical Communications, 48(44), 5443. doi:10.1039/c2cc31385e es_ES
dc.description.references Li, X., Jiang, Y., Shuai, L., Wang, L., Meng, L., & Mu, X. (2012). Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J. Mater. Chem., 22(4), 1283-1289. doi:10.1039/c1jm12954f es_ES
dc.description.references Bradder, P., Ling, S. K., Wang, S., & Liu, S. (2011). Dye Adsorption on Layered Graphite Oxide. Journal of Chemical & Engineering Data, 56(1), 138-141. doi:10.1021/je101049g es_ES
dc.description.references Gao, Y., Ma, D., Wang, C., Guan, J., & Bao, X. (2011). Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun., 47(8), 2432-2434. doi:10.1039/c0cc04420b es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537 es_ES
dc.description.references Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806-4814. doi:10.1021/nn1006368 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem