Mostrar el registro sencillo del ítem
dc.contributor.author | Amarajothi, Dhakshina Moorthy | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | Puche, Marta | es_ES |
dc.contributor.author | Fornes Seguí, Vicente | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2013-06-10T12:03:39Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1867-3880 | |
dc.identifier.uri | http://hdl.handle.net/10251/29571 | |
dc.description.abstract | [EN] Graphene oxide obtained through the standard Hummers oxidation of graphite and subsequent exfoliation promotes acetalization of aldehydes in methanol. It is a highly efficient reusable heterogeneous catalyst because of its advantages of absence of transition metals, sustainable resources, and high activity, large surface area, and accessibility of active sites. Analytical and spectroscopic data suggest that the sulfate groups introduced spontaneously during Hummers | en_EN |
dc.description.sponsorship | The authors gratefully acknowledge the Spanish Ministry of Competitivity (CTQ 2009-15689 and Consolider Multicat) for financial support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | WILEY-VCH Verlag GmbH & Co. KGaA, | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acetalization | es_ES |
dc.subject | Acid catalysis | es_ES |
dc.subject | Graphene oxide | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | Sustainable processes | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cctc.201200461 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2009-15689/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Amarajothi, DM.; Alvaro Rodríguez, MM.; Puche, M.; Fornes Seguí, V.; García Gómez, H. (2012). Graphene Oxide as Catalyst for the Acetalization of Aldehydes at Room Temperature. ChemCatChem. 4(12):2026-2030. https://doi.org/10.1002/cctc.201200461 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/cctc.201200461 | es_ES |
dc.description.upvformatpinicio | 2026 | es_ES |
dc.description.upvformatpfin | 2030 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 240544 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Westervelt, R. M. (2008). APPLIED PHYSICS: Graphene Nanoelectronics. Science, 320(5874), 324-325. doi:10.1126/science.1156936 | es_ES |
dc.description.references | Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007 | es_ES |
dc.description.references | Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078b | es_ES |
dc.description.references | An, X., & Yu, J. C. (2011). Graphene-based photocatalytic composites. RSC Advances, 1(8), 1426. doi:10.1039/c1ra00382h | es_ES |
dc.description.references | Liao, G., Chen, S., Quan, X., Yu, H., & Zhao, H. (2012). Graphene oxide modified g-C3N4hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem., 22(6), 2721-2726. doi:10.1039/c1jm13490f | es_ES |
dc.description.references | Štengl, V., Popelková, D., & Vláčil, P. (2011). TiO2–Graphene Nanocomposite as High Performace Photocatalysts. The Journal of Physical Chemistry C, 115(51), 25209-25218. doi:10.1021/jp207515z | es_ES |
dc.description.references | Zheng, Y., Liu, J., Liang, J., Jaroniec, M., & Qiao, S. Z. (2012). Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science, 5(5), 6717. doi:10.1039/c2ee03479d | es_ES |
dc.description.references | Ning, G., Fan, Z., Wang, G., Gao, J., Qian, W., & Wei, F. (2011). Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chemical Communications, 47(21), 5976. doi:10.1039/c1cc11159k | es_ES |
dc.description.references | Machado, B. F., & Serp, P. (2012). Graphene-based materials for catalysis. Catal. Sci. Technol., 2(1), 54-75. doi:10.1039/c1cy00361e | es_ES |
dc.description.references | Pyun, J. (2010). Graphenoxid als Katalysator: Kohlenstoffmaterialien in Anwendungen jenseits der Nanotechnologie. Angewandte Chemie, 123(1), 46-48. doi:10.1002/ange.201003897 | es_ES |
dc.description.references | Pyun, J. (2010). Graphene Oxide as Catalyst: Application of Carbon Materials beyond Nanotechnology. Angewandte Chemie International Edition, 50(1), 46-48. doi:10.1002/anie.201003897 | es_ES |
dc.description.references | Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g | es_ES |
dc.description.references | Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017 | es_ES |
dc.description.references | Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). Graphite Oxide as an Auto-Tandem Oxidation-Hydration-Aldol Coupling Catalyst. Advanced Synthesis & Catalysis, 353(4), 528-532. doi:10.1002/adsc.201000748 | es_ES |
dc.description.references | Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j | es_ES |
dc.description.references | Jia, H.-P., Dreyer, D. R., & Bielawski, C. W. (2011). C–H oxidation using graphite oxide. Tetrahedron, 67(24), 4431-4434. doi:10.1016/j.tet.2011.02.065 | es_ES |
dc.description.references | Dreyer, D. R., Jarvis, K. A., Ferreira, P. J., & Bielawski, C. W. (2011). Graphite Oxide as a Dehydrative Polymerization Catalyst: A One-Step Synthesis of Carbon-Reinforced Poly(phenylene methylene) Composites. Macromolecules, 44(19), 7659-7667. doi:10.1021/ma201306x | es_ES |
dc.description.references | Dreyer, D. R., Jia, H.-P., & Bielawski, C. W. (2010). Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angewandte Chemie, 122(38), 6965-6968. doi:10.1002/ange.201002160 | es_ES |
dc.description.references | Liu, F., Sun, J., Zhu, L., Meng, X., Qi, C., & Xiao, F.-S. (2012). Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions. Journal of Materials Chemistry, 22(12), 5495. doi:10.1039/c2jm16608a | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Concepción, P., Fornés, V., & Garcia, H. (2012). Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chemical Communications, 48(44), 5443. doi:10.1039/c2cc31385e | es_ES |
dc.description.references | Li, X., Jiang, Y., Shuai, L., Wang, L., Meng, L., & Mu, X. (2012). Sulfonated copolymers with SO3H and COOH groups for the hydrolysis of polysaccharides. J. Mater. Chem., 22(4), 1283-1289. doi:10.1039/c1jm12954f | es_ES |
dc.description.references | Bradder, P., Ling, S. K., Wang, S., & Liu, S. (2011). Dye Adsorption on Layered Graphite Oxide. Journal of Chemical & Engineering Data, 56(1), 138-141. doi:10.1021/je101049g | es_ES |
dc.description.references | Gao, Y., Ma, D., Wang, C., Guan, J., & Bao, X. (2011). Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun., 47(8), 2432-2434. doi:10.1039/c0cc04420b | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537 | es_ES |
dc.description.references | Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806-4814. doi:10.1021/nn1006368 | es_ES |