- -

Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Amarajothi ., Dhakshina Moorthy es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Sempere Aracil, David es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2013-06-10T12:08:53Z
dc.date.issued 2012
dc.identifier.issn 1867-3880
dc.identifier.uri http://hdl.handle.net/10251/29572
dc.description.abstract After purification by Fenton treatment, commercial diamond nanoparticles (NPs) are a suitable solid support for the deposition of Cu nanoparticles. Heating at 5008C under hydrogen proved to be a convenient annealing process for Fenton-purified diamond NPs that decreased the population of surface carboxylic acid groups and lead to samples with average Cu particle sizes of 3¿4 nm. The samples of Cu NPs supported on diamond NPs have been characterized by IR and X-ray photoelectron spectroscopy, as well as XRD and TEM. It was concluded that the samples contained Cu0 as well as CuI and CuII species. The resulting diamond-supported Cu NPs were highly active for the selective aerobic oxidation of aromatic thiols to the corresponding disulfides, whereas aliphatic thiols exhibited much lower reactivity because of some poisoning and catalyst deactivation produced by aliphatic thiols. The Cu catalysts used for thiophenol oxidation could be reused in four consecutive runs with 4% of decrease in the catalytic activity. This Cu catalyst exhibited similar catalytic activity, but is considerably more affordable, as an analogous diamond-supported Au catalyst. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Science and Education (Consolider MULTICAT, CTQ-2009-11856) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher WILEY-VCH Verlag GmbH & Co. KGaA, es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Aerobic oxidation es_ES
dc.subject Copper es_ES
dc.subject Diamond es_ES
dc.subject Nanoparticles es_ES
dc.subject Thiophenol es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cctc.201200569
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CTQ-2009-11856 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Amarajothi ., DM.; Navalón Oltra, S.; Sempere Aracil, D.; Alvaro Rodríguez, MM.; García Gómez, H. (2012). Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles. ChemCatChem. 5(1):241-246. https://doi.org/10.1002/cctc.201200569 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cctc.201200569 es_ES
dc.description.upvformatpinicio 241 es_ES
dc.description.upvformatpfin 246 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 240557
dc.contributor.funder Ministerio de Educación y Ciencia
dc.description.references Zysman-Colman, E., & Harpp, D. N. (2005). Generalized Synthesis and Physical Properties of Dialkoxy Disulfides. The Journal of Organic Chemistry, 70(15), 5964-5973. doi:10.1021/jo050574s es_ES
dc.description.references Ghammamy, S., & Tajbakhsh, M. (2005). Oxidative coupling of thiols to disulfides in solution and under microwave radiation with tripropylammonium chlorochromate. Journal of Sulfur Chemistry, 26(2), 145-148. doi:10.1080/17415990500089086 es_ES
dc.description.references Karami, B., & Montazerozohori, M. (2006). Bis (salicylaldehyde-1, 2-phenylene diimine)Mn(III) chloride (Mn(III)-salophen) catalysed oxidation of thiols to symmetrical disulfides using urea hydrogen peroxide (UHP) as mild and efficient oxidant. Journal of Chemical Research, 2006(8), 490-492. doi:10.3184/030823406778256441 es_ES
dc.description.references Bischoff, L., David, C., Martin, L., Meudal, H., Roques, B.-P., & Fournié-Zaluski, M.-C. (1997). 2,4-Dinitrophenyl 4-Methoxybenzyl Disulfide:  A New Efficient Reagent for the Electrophilic Sulfenylation of β-Amino Ester Enolates. The Journal of Organic Chemistry, 62(14), 4848-4850. doi:10.1021/jo9623853 es_ES
dc.description.references Hosseinpoor, F., & Golchoubian, H. (2006). Mild and highly efficient transformation of thiols to symmetrical disulfides using urea–hydrogen peroxide catalyzed by a Mn(III)–salen complex. Catalysis Letters, 111(3-4), 165-168. doi:10.1007/s10562-006-0141-8 es_ES
dc.description.references Noureldin, N. A., Caldwell, M., Hendry, J., & Lee, D. G. (1998). Heterogeneous Permanganate Oxidation of Thiols. Synthesis, 1998(11), 1587-1589. doi:10.1055/s-1998-2190 es_ES
dc.description.references Ali, M. H., & McDermott, M. (2002). Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support. Tetrahedron Letters, 43(35), 6271-6273. doi:10.1016/s0040-4039(02)01220-0 es_ES
dc.description.references Ramesha, A. R., & Chandrasekaran, S. (1994). A facile entry to macrocyclic disulfides: an efficient synthesis of redox-switched crown ethers. The Journal of Organic Chemistry, 59(6), 1354-1357. doi:10.1021/jo00085a025 es_ES
dc.description.references Tan, K. Y. D., Kee, J. W., & Fan, W. Y. (2010). CpMn(CO)3-Catalyzed Photoconversion of Thiols into Disulfides and Dihydrogen. Organometallics, 29(20), 4459-4463. doi:10.1021/om1005947 es_ES
dc.description.references Tan, K. Y. D., Teng, G. F., & Fan, W. Y. (2011). Photocatalytic Transformation of Organic and Water-Soluble Thiols into Disulfides and Hydrogen under Aerobic Conditions Using Mn(CO)5Br. Organometallics, 30(15), 4136-4143. doi:10.1021/om200461j es_ES
dc.description.references Hajipour, A. R., Mallakpour, S. E., & Adibi, H. (2002). Selective and Efficient Oxidation of Sulfides and Thiols with Benzyltriphenylphosphonium Peroxymonosulfate in Aprotic Solvent. The Journal of Organic Chemistry, 67(24), 8666-8668. doi:10.1021/jo026106p es_ES
dc.description.references Golchoubian, H., & Hosseinpoor, F. (2007). Aerobic oxidation of thiols to disulfides catalyzed by a manganese(III) Schiff-base complex. Catalysis Communications, 8(4), 697-700. doi:10.1016/j.catcom.2006.08.036 es_ES
dc.description.references Chauhan, S. M. S., Kumar, A., & Srinivas, K. A. (2003). Oxidation of thiols with molecular oxygen catalyzed by cobalt(ii) phthalocyanines in ionic liquidElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b3/b305888c/. Chemical Communications, (18), 2348. doi:10.1039/b305888c es_ES
dc.description.references Tanaka, K., & Ajiki, K. (2004). Cationic rhodium(I)/PPh3 complex-catalyzed dehydrogenation of alkanethiols to disulfides under inert atmosphere. Tetrahedron Letters, 45(1), 25-27. doi:10.1016/j.tetlet.2003.10.120 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a es_ES
dc.description.references Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j es_ES
dc.description.references Corma, A., Ródenas, T., & Sabater, M. J. (2012). Aerobic oxidation of thiols to disulfides by heterogeneous goldcatalysts. Chem. Sci., 3(2), 398-404. doi:10.1039/c1sc00466b es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216 es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216 es_ES
dc.description.references Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O., & Gogotsi, Y. (2006). Control of sp2/sp3Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. Journal of the American Chemical Society, 128(35), 11635-11642. doi:10.1021/ja063303n es_ES
dc.description.references Carroll, K. J., Reveles, J. U., Shultz, M. D., Khanna, S. N., & Carpenter, E. E. (2011). Preparation of Elemental Cu and Ni Nanoparticles by the Polyol Method: An Experimental and Theoretical Approach. The Journal of Physical Chemistry C, 115(6), 2656-2664. doi:10.1021/jp1104196 es_ES
dc.description.references Joseyphus, R. J., Shinoda, K., Kodama, D., & Jeyadevan, B. (2010). Size controlled Fe nanoparticles through polyol process and their magnetic properties. Materials Chemistry and Physics, 123(2-3), 487-493. doi:10.1016/j.matchemphys.2010.05.001 es_ES
dc.description.references Martin, R., Navalon, S., Delgado, J. J., Calvino, J. J., Alvaro, M., & Garcia, H. (2011). Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 17(34), 9494-9502. doi:10.1002/chem.201100955 es_ES
dc.description.references Chanquía, C. M., Andrini, L., Fernández, J. D., Crivello, M. E., Requejo, F. G., Herrero, E. R., & Eimer, G. A. (2010). Speciation of Copper in Spherical Mesoporous Silicates: From the Microscale to Angstrom. The Journal of Physical Chemistry C, 114(28), 12221-12229. doi:10.1021/jp102622v es_ES
dc.description.references Yoshida, K., Gonzalez-Arellano, C., Luque, R., & Gai, P. L. (2010). Efficient hydrogenation of carbonyl compounds using low-loaded supported copper nanoparticles under microwave irradiation. Applied Catalysis A: General, 379(1-2), 38-44. doi:10.1016/j.apcata.2010.02.028 es_ES
dc.description.references Dong, T.-Y., Wu, H. H., Huang, C., Song, J. M., Chen, I. G., & Kao, T. H. (2009). Octanethiolated Cu and Cu2O nanoparticles as ink to form metallic copper film. Applied Surface Science, 255(6), 3891-3896. doi:10.1016/j.apsusc.2008.10.085 es_ES
dc.description.references Gamez, P., Arends, I. W. C. E., Reedijk, J., & Sheldon, R. A. (2003). Copper(ii)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chemical Communications, (19), 2414. doi:10.1039/b308668b es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem