Mostrar el registro sencillo del ítem
dc.contributor.author | Amarajothi ., Dhakshina Moorthy | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | Sempere Aracil, David | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2013-06-10T12:08:53Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1867-3880 | |
dc.identifier.uri | http://hdl.handle.net/10251/29572 | |
dc.description.abstract | After purification by Fenton treatment, commercial diamond nanoparticles (NPs) are a suitable solid support for the deposition of Cu nanoparticles. Heating at 5008C under hydrogen proved to be a convenient annealing process for Fenton-purified diamond NPs that decreased the population of surface carboxylic acid groups and lead to samples with average Cu particle sizes of 3¿4 nm. The samples of Cu NPs supported on diamond NPs have been characterized by IR and X-ray photoelectron spectroscopy, as well as XRD and TEM. It was concluded that the samples contained Cu0 as well as CuI and CuII species. The resulting diamond-supported Cu NPs were highly active for the selective aerobic oxidation of aromatic thiols to the corresponding disulfides, whereas aliphatic thiols exhibited much lower reactivity because of some poisoning and catalyst deactivation produced by aliphatic thiols. The Cu catalysts used for thiophenol oxidation could be reused in four consecutive runs with 4% of decrease in the catalytic activity. This Cu catalyst exhibited similar catalytic activity, but is considerably more affordable, as an analogous diamond-supported Au catalyst. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Science and Education (Consolider MULTICAT, CTQ-2009-11856) is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | WILEY-VCH Verlag GmbH & Co. KGaA, | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aerobic oxidation | es_ES |
dc.subject | Copper | es_ES |
dc.subject | Diamond | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Thiophenol | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cctc.201200569 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CTQ-2009-11856 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Amarajothi ., DM.; Navalón Oltra, S.; Sempere Aracil, D.; Alvaro Rodríguez, MM.; García Gómez, H. (2012). Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles. ChemCatChem. 5(1):241-246. https://doi.org/10.1002/cctc.201200569 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cctc.201200569 | es_ES |
dc.description.upvformatpinicio | 241 | es_ES |
dc.description.upvformatpfin | 246 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 240557 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | |
dc.description.references | Zysman-Colman, E., & Harpp, D. N. (2005). Generalized Synthesis and Physical Properties of Dialkoxy Disulfides. The Journal of Organic Chemistry, 70(15), 5964-5973. doi:10.1021/jo050574s | es_ES |
dc.description.references | Ghammamy, S., & Tajbakhsh, M. (2005). Oxidative coupling of thiols to disulfides in solution and under microwave radiation with tripropylammonium chlorochromate. Journal of Sulfur Chemistry, 26(2), 145-148. doi:10.1080/17415990500089086 | es_ES |
dc.description.references | Karami, B., & Montazerozohori, M. (2006). Bis (salicylaldehyde-1, 2-phenylene diimine)Mn(III) chloride (Mn(III)-salophen) catalysed oxidation of thiols to symmetrical disulfides using urea hydrogen peroxide (UHP) as mild and efficient oxidant. Journal of Chemical Research, 2006(8), 490-492. doi:10.3184/030823406778256441 | es_ES |
dc.description.references | Bischoff, L., David, C., Martin, L., Meudal, H., Roques, B.-P., & Fournié-Zaluski, M.-C. (1997). 2,4-Dinitrophenyl 4-Methoxybenzyl Disulfide: A New Efficient Reagent for the Electrophilic Sulfenylation of β-Amino Ester Enolates. The Journal of Organic Chemistry, 62(14), 4848-4850. doi:10.1021/jo9623853 | es_ES |
dc.description.references | Hosseinpoor, F., & Golchoubian, H. (2006). Mild and highly efficient transformation of thiols to symmetrical disulfides using urea–hydrogen peroxide catalyzed by a Mn(III)–salen complex. Catalysis Letters, 111(3-4), 165-168. doi:10.1007/s10562-006-0141-8 | es_ES |
dc.description.references | Noureldin, N. A., Caldwell, M., Hendry, J., & Lee, D. G. (1998). Heterogeneous Permanganate Oxidation of Thiols. Synthesis, 1998(11), 1587-1589. doi:10.1055/s-1998-2190 | es_ES |
dc.description.references | Ali, M. H., & McDermott, M. (2002). Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support. Tetrahedron Letters, 43(35), 6271-6273. doi:10.1016/s0040-4039(02)01220-0 | es_ES |
dc.description.references | Ramesha, A. R., & Chandrasekaran, S. (1994). A facile entry to macrocyclic disulfides: an efficient synthesis of redox-switched crown ethers. The Journal of Organic Chemistry, 59(6), 1354-1357. doi:10.1021/jo00085a025 | es_ES |
dc.description.references | Tan, K. Y. D., Kee, J. W., & Fan, W. Y. (2010). CpMn(CO)3-Catalyzed Photoconversion of Thiols into Disulfides and Dihydrogen. Organometallics, 29(20), 4459-4463. doi:10.1021/om1005947 | es_ES |
dc.description.references | Tan, K. Y. D., Teng, G. F., & Fan, W. Y. (2011). Photocatalytic Transformation of Organic and Water-Soluble Thiols into Disulfides and Hydrogen under Aerobic Conditions Using Mn(CO)5Br. Organometallics, 30(15), 4136-4143. doi:10.1021/om200461j | es_ES |
dc.description.references | Hajipour, A. R., Mallakpour, S. E., & Adibi, H. (2002). Selective and Efficient Oxidation of Sulfides and Thiols with Benzyltriphenylphosphonium Peroxymonosulfate in Aprotic Solvent. The Journal of Organic Chemistry, 67(24), 8666-8668. doi:10.1021/jo026106p | es_ES |
dc.description.references | Golchoubian, H., & Hosseinpoor, F. (2007). Aerobic oxidation of thiols to disulfides catalyzed by a manganese(III) Schiff-base complex. Catalysis Communications, 8(4), 697-700. doi:10.1016/j.catcom.2006.08.036 | es_ES |
dc.description.references | Chauhan, S. M. S., Kumar, A., & Srinivas, K. A. (2003). Oxidation of thiols with molecular oxygen catalyzed by cobalt(ii) phthalocyanines in ionic liquidElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b3/b305888c/. Chemical Communications, (18), 2348. doi:10.1039/b305888c | es_ES |
dc.description.references | Tanaka, K., & Ajiki, K. (2004). Cationic rhodium(I)/PPh3 complex-catalyzed dehydrogenation of alkanethiols to disulfides under inert atmosphere. Tetrahedron Letters, 45(1), 25-27. doi:10.1016/j.tetlet.2003.10.120 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a | es_ES |
dc.description.references | Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j | es_ES |
dc.description.references | Corma, A., Ródenas, T., & Sabater, M. J. (2012). Aerobic oxidation of thiols to disulfides by heterogeneous goldcatalysts. Chem. Sci., 3(2), 398-404. doi:10.1039/c1sc00466b | es_ES |
dc.description.references | Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216 | es_ES |
dc.description.references | Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216 | es_ES |
dc.description.references | Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O., & Gogotsi, Y. (2006). Control of sp2/sp3Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. Journal of the American Chemical Society, 128(35), 11635-11642. doi:10.1021/ja063303n | es_ES |
dc.description.references | Carroll, K. J., Reveles, J. U., Shultz, M. D., Khanna, S. N., & Carpenter, E. E. (2011). Preparation of Elemental Cu and Ni Nanoparticles by the Polyol Method: An Experimental and Theoretical Approach. The Journal of Physical Chemistry C, 115(6), 2656-2664. doi:10.1021/jp1104196 | es_ES |
dc.description.references | Joseyphus, R. J., Shinoda, K., Kodama, D., & Jeyadevan, B. (2010). Size controlled Fe nanoparticles through polyol process and their magnetic properties. Materials Chemistry and Physics, 123(2-3), 487-493. doi:10.1016/j.matchemphys.2010.05.001 | es_ES |
dc.description.references | Martin, R., Navalon, S., Delgado, J. J., Calvino, J. J., Alvaro, M., & Garcia, H. (2011). Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 17(34), 9494-9502. doi:10.1002/chem.201100955 | es_ES |
dc.description.references | Chanquía, C. M., Andrini, L., Fernández, J. D., Crivello, M. E., Requejo, F. G., Herrero, E. R., & Eimer, G. A. (2010). Speciation of Copper in Spherical Mesoporous Silicates: From the Microscale to Angstrom. The Journal of Physical Chemistry C, 114(28), 12221-12229. doi:10.1021/jp102622v | es_ES |
dc.description.references | Yoshida, K., Gonzalez-Arellano, C., Luque, R., & Gai, P. L. (2010). Efficient hydrogenation of carbonyl compounds using low-loaded supported copper nanoparticles under microwave irradiation. Applied Catalysis A: General, 379(1-2), 38-44. doi:10.1016/j.apcata.2010.02.028 | es_ES |
dc.description.references | Dong, T.-Y., Wu, H. H., Huang, C., Song, J. M., Chen, I. G., & Kao, T. H. (2009). Octanethiolated Cu and Cu2O nanoparticles as ink to form metallic copper film. Applied Surface Science, 255(6), 3891-3896. doi:10.1016/j.apsusc.2008.10.085 | es_ES |
dc.description.references | Gamez, P., Arends, I. W. C. E., Reedijk, J., & Sheldon, R. A. (2003). Copper(ii)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chemical Communications, (19), 2414. doi:10.1039/b308668b | es_ES |