- -

Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles

Mostrar el registro completo del ítem

Amarajothi ., DM.; Navalón Oltra, S.; Sempere Aracil, D.; Alvaro Rodríguez, MM.; García Gómez, H. (2012). Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles. ChemCatChem. 5(1):241-246. https://doi.org/10.1002/cctc.201200569

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/29572

Ficheros en el ítem

Metadatos del ítem

Título: Aerobic Oxidation of Thiols Catalyzed by Copper Nanoparticles Supported on Diamond Nanoparticles
Autor: Amarajothi ., Dhakshina Moorthy Navalón Oltra, Sergio Sempere Aracil, David Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
After purification by Fenton treatment, commercial diamond nanoparticles (NPs) are a suitable solid support for the deposition of Cu nanoparticles. Heating at 5008C under hydrogen proved to be a convenient annealing process ...[+]
Palabras clave: Aerobic oxidation , Copper , Diamond , Nanoparticles , Thiophenol
Derechos de uso: Cerrado
Fuente:
ChemCatChem. (issn: 1867-3880 )
DOI: 10.1002/cctc.201200569
Editorial:
WILEY-VCH Verlag GmbH & Co. KGaA,
Versión del editor: http://dx.doi.org/10.1002/cctc.201200569
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CTQ-2009-11856
Agradecimientos:
Financial support by the Spanish Ministry of Science and Education (Consolider MULTICAT, CTQ-2009-11856) is gratefully acknowledged.
Tipo: Artículo

References

Zysman-Colman, E., & Harpp, D. N. (2005). Generalized Synthesis and Physical Properties of Dialkoxy Disulfides. The Journal of Organic Chemistry, 70(15), 5964-5973. doi:10.1021/jo050574s

Ghammamy, S., & Tajbakhsh, M. (2005). Oxidative coupling of thiols to disulfides in solution and under microwave radiation with tripropylammonium chlorochromate. Journal of Sulfur Chemistry, 26(2), 145-148. doi:10.1080/17415990500089086

Karami, B., & Montazerozohori, M. (2006). Bis (salicylaldehyde-1, 2-phenylene diimine)Mn(III) chloride (Mn(III)-salophen) catalysed oxidation of thiols to symmetrical disulfides using urea hydrogen peroxide (UHP) as mild and efficient oxidant. Journal of Chemical Research, 2006(8), 490-492. doi:10.3184/030823406778256441 [+]
Zysman-Colman, E., & Harpp, D. N. (2005). Generalized Synthesis and Physical Properties of Dialkoxy Disulfides. The Journal of Organic Chemistry, 70(15), 5964-5973. doi:10.1021/jo050574s

Ghammamy, S., & Tajbakhsh, M. (2005). Oxidative coupling of thiols to disulfides in solution and under microwave radiation with tripropylammonium chlorochromate. Journal of Sulfur Chemistry, 26(2), 145-148. doi:10.1080/17415990500089086

Karami, B., & Montazerozohori, M. (2006). Bis (salicylaldehyde-1, 2-phenylene diimine)Mn(III) chloride (Mn(III)-salophen) catalysed oxidation of thiols to symmetrical disulfides using urea hydrogen peroxide (UHP) as mild and efficient oxidant. Journal of Chemical Research, 2006(8), 490-492. doi:10.3184/030823406778256441

Bischoff, L., David, C., Martin, L., Meudal, H., Roques, B.-P., & Fournié-Zaluski, M.-C. (1997). 2,4-Dinitrophenyl 4-Methoxybenzyl Disulfide:  A New Efficient Reagent for the Electrophilic Sulfenylation of β-Amino Ester Enolates. The Journal of Organic Chemistry, 62(14), 4848-4850. doi:10.1021/jo9623853

Hosseinpoor, F., & Golchoubian, H. (2006). Mild and highly efficient transformation of thiols to symmetrical disulfides using urea–hydrogen peroxide catalyzed by a Mn(III)–salen complex. Catalysis Letters, 111(3-4), 165-168. doi:10.1007/s10562-006-0141-8

Noureldin, N. A., Caldwell, M., Hendry, J., & Lee, D. G. (1998). Heterogeneous Permanganate Oxidation of Thiols. Synthesis, 1998(11), 1587-1589. doi:10.1055/s-1998-2190

Ali, M. H., & McDermott, M. (2002). Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support. Tetrahedron Letters, 43(35), 6271-6273. doi:10.1016/s0040-4039(02)01220-0

Ramesha, A. R., & Chandrasekaran, S. (1994). A facile entry to macrocyclic disulfides: an efficient synthesis of redox-switched crown ethers. The Journal of Organic Chemistry, 59(6), 1354-1357. doi:10.1021/jo00085a025

Tan, K. Y. D., Kee, J. W., & Fan, W. Y. (2010). CpMn(CO)3-Catalyzed Photoconversion of Thiols into Disulfides and Dihydrogen. Organometallics, 29(20), 4459-4463. doi:10.1021/om1005947

Tan, K. Y. D., Teng, G. F., & Fan, W. Y. (2011). Photocatalytic Transformation of Organic and Water-Soluble Thiols into Disulfides and Hydrogen under Aerobic Conditions Using Mn(CO)5Br. Organometallics, 30(15), 4136-4143. doi:10.1021/om200461j

Hajipour, A. R., Mallakpour, S. E., & Adibi, H. (2002). Selective and Efficient Oxidation of Sulfides and Thiols with Benzyltriphenylphosphonium Peroxymonosulfate in Aprotic Solvent. The Journal of Organic Chemistry, 67(24), 8666-8668. doi:10.1021/jo026106p

Golchoubian, H., & Hosseinpoor, F. (2007). Aerobic oxidation of thiols to disulfides catalyzed by a manganese(III) Schiff-base complex. Catalysis Communications, 8(4), 697-700. doi:10.1016/j.catcom.2006.08.036

Chauhan, S. M. S., Kumar, A., & Srinivas, K. A. (2003). Oxidation of thiols with molecular oxygen catalyzed by cobalt(ii) phthalocyanines in ionic liquidElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b3/b305888c/. Chemical Communications, (18), 2348. doi:10.1039/b305888c

Tanaka, K., & Ajiki, K. (2004). Cationic rhodium(I)/PPh3 complex-catalyzed dehydrogenation of alkanethiols to disulfides under inert atmosphere. Tetrahedron Letters, 45(1), 25-27. doi:10.1016/j.tetlet.2003.10.120

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a

Dreyer, D. R., Jia, H.-P., Todd, A. D., Geng, J., & Bielawski, C. W. (2011). Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Organic & Biomolecular Chemistry, 9(21), 7292. doi:10.1039/c1ob06102j

Corma, A., Ródenas, T., & Sabater, M. J. (2012). Aerobic oxidation of thiols to disulfides by heterogeneous goldcatalysts. Chem. Sci., 3(2), 398-404. doi:10.1039/c1sc00466b

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216

Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O., & Gogotsi, Y. (2006). Control of sp2/sp3Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. Journal of the American Chemical Society, 128(35), 11635-11642. doi:10.1021/ja063303n

Carroll, K. J., Reveles, J. U., Shultz, M. D., Khanna, S. N., & Carpenter, E. E. (2011). Preparation of Elemental Cu and Ni Nanoparticles by the Polyol Method: An Experimental and Theoretical Approach. The Journal of Physical Chemistry C, 115(6), 2656-2664. doi:10.1021/jp1104196

Joseyphus, R. J., Shinoda, K., Kodama, D., & Jeyadevan, B. (2010). Size controlled Fe nanoparticles through polyol process and their magnetic properties. Materials Chemistry and Physics, 123(2-3), 487-493. doi:10.1016/j.matchemphys.2010.05.001

Martin, R., Navalon, S., Delgado, J. J., Calvino, J. J., Alvaro, M., & Garcia, H. (2011). Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 17(34), 9494-9502. doi:10.1002/chem.201100955

Chanquía, C. M., Andrini, L., Fernández, J. D., Crivello, M. E., Requejo, F. G., Herrero, E. R., & Eimer, G. A. (2010). Speciation of Copper in Spherical Mesoporous Silicates: From the Microscale to Angstrom. The Journal of Physical Chemistry C, 114(28), 12221-12229. doi:10.1021/jp102622v

Yoshida, K., Gonzalez-Arellano, C., Luque, R., & Gai, P. L. (2010). Efficient hydrogenation of carbonyl compounds using low-loaded supported copper nanoparticles under microwave irradiation. Applied Catalysis A: General, 379(1-2), 38-44. doi:10.1016/j.apcata.2010.02.028

Dong, T.-Y., Wu, H. H., Huang, C., Song, J. M., Chen, I. G., & Kao, T. H. (2009). Octanethiolated Cu and Cu2O nanoparticles as ink to form metallic copper film. Applied Surface Science, 255(6), 3891-3896. doi:10.1016/j.apsusc.2008.10.085

Gamez, P., Arends, I. W. C. E., Reedijk, J., & Sheldon, R. A. (2003). Copper(ii)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chemical Communications, (19), 2414. doi:10.1039/b308668b

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem