- -

Alginate as template in the preparation of active titania photocatalysts

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Alginate as template in the preparation of active titania photocatalysts

Show full item record

Buaki-Sogo, M.; Serra, M.; Primo Arnau, AM.; Alvaro Rodríguez, MM.; García Gómez, H. (2012). Alginate as template in the preparation of active titania photocatalysts. ChemCatChem. 5(2):513-518. https://doi.org/10.1002/cctc.201200386

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/29573

Files in this item

Item Metadata

Title: Alginate as template in the preparation of active titania photocatalysts
Author: Buaki-Sogo, Mireia Serra, Marco Primo Arnau, Ana María Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] A simple and reliable procedure to prepare TiO2 and Au/TiO2 samples with high photocatalytic activity for hydrogen generation from water/methanol mixtures is reported, which uses natural alginate as the templating ...[+]
Subjects: Alginate , Gold , Hydrogen , Photocatalysis , Titanium
Copyrigths: Cerrado
Source:
ChemCatChem. (issn: 1867-3880 )
DOI: 10.1002/cctc.201200386
Publisher:
WILEY-VCH Verlag GmbH & Co. KGaA,
Publisher version: http://doi.org/10.1002/cctc.201200386
Project ID:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/MEC//CTQ2007-67805/ES/APLICACION DE NUEVOS DERIVADOS DEL PPV ENCAPSULADOS EN MATRICES DE SILICE EN LA PREPARACION DE TRANSISTORES DE CAMPO ELECTRICO Y RECTIFICADORES A ESCALA MICROMETRICA/
info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/
Thanks:
Financial support by the Spanish Ministry of Science and Education (CTQ2012-32315 and CTQ2010-18671) is gratefully acknowledged. Mireia Buaki-Sogo also thank the Spanish Ministry for a postgraduate scholarship (CTQ2007-67805).[+]
Type: Artículo

References

Kim, Y.-Y., Neudeck, C., & Walsh, D. (2010). Biopolymer templating as synthetic route to functional metal oxide nanoparticles and porous sponges. Polymer Chemistry, 1(3), 272. doi:10.1039/b9py00366e

Kimling, M. C., & Caruso, R. A. (2012). Sol–gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. Journal of Materials Chemistry, 22(9), 4073. doi:10.1039/c2jm15720a

El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740 [+]
Kim, Y.-Y., Neudeck, C., & Walsh, D. (2010). Biopolymer templating as synthetic route to functional metal oxide nanoparticles and porous sponges. Polymer Chemistry, 1(3), 272. doi:10.1039/b9py00366e

Kimling, M. C., & Caruso, R. A. (2012). Sol–gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. Journal of Materials Chemistry, 22(9), 4073. doi:10.1039/c2jm15720a

El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740

El Kadib, A., & Bousmina, M. (2012). Chitosan Bio-Based Organic-Inorganic Hybrid Aerogel Microspheres. Chemistry - A European Journal, 18(27), 8264-8277. doi:10.1002/chem.201104006

Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498

Stokke, B. T., Smidsroed, O., Bruheim, P., & Skjaak-Braek, G. (1991). Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macromolecules, 24(16), 4637-4645. doi:10.1021/ma00016a026

Stokke, B. T., Draget, K. I., Smidsrød, O., Yuguchi, Y., Urakawa, H., & Kajiwara, K. (2000). Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 1. Ca−Alginate Gels. Macromolecules, 33(5), 1853-1863. doi:10.1021/ma991559q

Agulhon, P., Constant, S., Chiche, B., Lartigue, L., Larionova, J., Di Renzo, F., & Quignard, F. (2012). Controlled synthesis from alginate gels of cobalt–manganese mixed oxide nanocrystals with peculiar magnetic properties. Catalysis Today, 189(1), 49-54. doi:10.1016/j.cattod.2012.03.052

Monakhova, Y., Agulhon, P., Quignard, F., Tanchoux, N., & Tichit, D. (2012). New mixed lanthanum- and alkaline-earth cation-containing basic catalysts obtained by an alginate route. Catalysis Today, 189(1), 28-34. doi:10.1016/j.cattod.2012.03.072

Primo, A., Liebel, M., & Quignard, F. (2009). Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 21(4), 621-627. doi:10.1021/cm8020337

Chtchigrovsky, M., Lin, Y., Ouchaou, K., Chaumontet, M., Robitzer, M., Quignard, F., & Taran, F. (2012). Dramatic Effect of the Gelling Cation on the Catalytic Performances of Alginate-Supported Palladium Nanoparticles for the Suzuki–Miyaura Reaction. Chemistry of Materials, 24(8), 1505-1510. doi:10.1021/cm3003595

Agulhon, P., Markova, V., Robitzer, M., Quignard, F., & Mineva, T. (2012). Structure of Alginate Gels: Interaction of Diuronate Units with Divalent Cations from Density Functional Calculations. Biomacromolecules, 13(6), 1899-1907. doi:10.1021/bm300420z

Pal, A., Esumi, K., & Pal, T. (2005). Preparation of nanosized gold particles in a biopolymer using UV photoactivation. Journal of Colloid and Interface Science, 288(2), 396-401. doi:10.1016/j.jcis.2005.03.048

Guo, R., Li, R., Li, X., Zhang, L., Jiang, X., & Liu, B. (2009). Dual-Functional Alginic Acid Hybrid Nanospheres for Cell Imaging and Drug Delivery. Small, 5(6), 709-717. doi:10.1002/smll.200801375

Valentin, R., Horga, R., Bonelli, B., Garrone, E., Di Renzo, F., & Quignard, F. (2006). FTIR Spectroscopy of NH3on Acidic and Ionotropic Alginate Aerogels. Biomacromolecules, 7(3), 877-882. doi:10.1021/bm050559x

Robitzer, M., David, L., Rochas, C., Di Renzo, F., & Quignard, F. (2008). Supercritically-Dried Alginate Aerogels Retain the Fibrillar Structure of the Hydrogels. Macromolecular Symposia, 273(1), 80-84. doi:10.1002/masy.200851311

Gomes Silva, C., Juárez, R., Marino, T., Molinari, R., & García, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133(3), 595-602. doi:10.1021/ja1086358

Xu, H., Chen, X., Ouyang, S., Kako, T., & Ye, J. (2012). Size-Dependent Mie’s Scattering Effect on TiO2Spheres for the Superior Photoactivity of H2Evolution. The Journal of Physical Chemistry C, 116(5), 3833-3839. doi:10.1021/jp209378t

Medda, S. K., De, S., & De, G. (2005). Synthesis of Au nanoparticle doped SiO2–TiO2 films: tuning of Au surface plasmon band position through controlling the refractive index. Journal of Materials Chemistry, 15(32), 3278. doi:10.1039/b506399j

Thomas, K. G., Zajicek, J., & Kamat, P. V. (2002). Surface Binding Properties of Tetraoctylammonium Bromide-Capped Gold Nanoparticles. Langmuir, 18(9), 3722-3727. doi:10.1021/la015669d

Miller, M. M., & Lazarides, A. A. (2005). Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment. The Journal of Physical Chemistry B, 109(46), 21556-21565. doi:10.1021/jp054227y

Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b

Ma, T., Akiyama, M., Abe, E., & Imai, I. (2005). High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode. Nano Letters, 5(12), 2543-2547. doi:10.1021/nl051885l

Ren, M., Ravikrishna, R., & Valsaraj, K. T. (2006). Photocatalytic Degradation of Gaseous Organic Species on Photonic Band-Gap Titania. Environmental Science & Technology, 40(22), 7029-7033. doi:10.1021/es061045o

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record