- -

Alginate as template in the preparation of active titania photocatalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Alginate as template in the preparation of active titania photocatalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Buaki-Sogo, Mireia es_ES
dc.contributor.author Serra, Marco es_ES
dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2013-06-10T12:15:09Z
dc.date.issued 2012
dc.identifier.issn 1867-3880
dc.identifier.uri http://hdl.handle.net/10251/29573
dc.description.abstract [EN] A simple and reliable procedure to prepare TiO2 and Au/TiO2 samples with high photocatalytic activity for hydrogen generation from water/methanol mixtures is reported, which uses natural alginate as the templating agent. Aqueous solutions of sodium alginate are flocculated as beads by Ti=O2+ ions in the presence or absence of AuCl4 . The resulting alginate beads containing approximately 25 wt% of Ti and various Au contents are dehydrated by ethanol washings before drying under supercritical CO2 conditions. The key step in the preparation method is to obtain Au/Ti-containing alginate aerogels of approximately 700 m2g 1 Brunauer¿Emmett¿Teller surface area. The surface area of the TiO2 and Au/TiO2 samples obtained after calcination of the organic biopolymer at 4508C under air ranges from 187 to 136 m2g 1, and the Au content has been varied from 1.3 to 0.05 wt% to optimize the photocatalytic activity of the samples. TiO2 forms in the anatase phase according to XRD and Raman spectroscopy. The highest activity Au/TiO2 sample (containing 0.556 wt% of Au) prepared by means of the biopolymer templating method was approximately eight times more active for hydrogen generation using a solar simulator than was an analogous Au-containing TiO2 P25 sample prepared by means of the conventional deposition¿precipitation method. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Science and Education (CTQ2012-32315 and CTQ2010-18671) is gratefully acknowledged. Mireia Buaki-Sogo also thank the Spanish Ministry for a postgraduate scholarship (CTQ2007-67805). en_EN
dc.language Inglés es_ES
dc.publisher WILEY-VCH Verlag GmbH & Co. KGaA, es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alginate es_ES
dc.subject Gold es_ES
dc.subject Hydrogen es_ES
dc.subject Photocatalysis es_ES
dc.subject Titanium es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Alginate as template in the preparation of active titania photocatalysts es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cctc.201200386
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CTQ2007-67805/ES/APLICACION DE NUEVOS DERIVADOS DEL PPV ENCAPSULADOS EN MATRICES DE SILICE EN LA PREPARACION DE TRANSISTORES DE CAMPO ELECTRICO Y RECTIFICADORES A ESCALA MICROMETRICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Buaki-Sogo, M.; Serra, M.; Primo Arnau, AM.; Alvaro Rodríguez, MM.; García Gómez, H. (2012). Alginate as template in the preparation of active titania photocatalysts. ChemCatChem. 5(2):513-518. https://doi.org/10.1002/cctc.201200386 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/cctc.201200386 es_ES
dc.description.upvformatpinicio 513 es_ES
dc.description.upvformatpfin 518 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 229703
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Kim, Y.-Y., Neudeck, C., & Walsh, D. (2010). Biopolymer templating as synthetic route to functional metal oxide nanoparticles and porous sponges. Polymer Chemistry, 1(3), 272. doi:10.1039/b9py00366e es_ES
dc.description.references Kimling, M. C., & Caruso, R. A. (2012). Sol–gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. Journal of Materials Chemistry, 22(9), 4073. doi:10.1039/c2jm15720a es_ES
dc.description.references El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740 es_ES
dc.description.references El Kadib, A., & Bousmina, M. (2012). Chitosan Bio-Based Organic-Inorganic Hybrid Aerogel Microspheres. Chemistry - A European Journal, 18(27), 8264-8277. doi:10.1002/chem.201104006 es_ES
dc.description.references Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498 es_ES
dc.description.references Stokke, B. T., Smidsroed, O., Bruheim, P., & Skjaak-Braek, G. (1991). Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macromolecules, 24(16), 4637-4645. doi:10.1021/ma00016a026 es_ES
dc.description.references Stokke, B. T., Draget, K. I., Smidsrød, O., Yuguchi, Y., Urakawa, H., & Kajiwara, K. (2000). Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 1. Ca−Alginate Gels. Macromolecules, 33(5), 1853-1863. doi:10.1021/ma991559q es_ES
dc.description.references Agulhon, P., Constant, S., Chiche, B., Lartigue, L., Larionova, J., Di Renzo, F., & Quignard, F. (2012). Controlled synthesis from alginate gels of cobalt–manganese mixed oxide nanocrystals with peculiar magnetic properties. Catalysis Today, 189(1), 49-54. doi:10.1016/j.cattod.2012.03.052 es_ES
dc.description.references Monakhova, Y., Agulhon, P., Quignard, F., Tanchoux, N., & Tichit, D. (2012). New mixed lanthanum- and alkaline-earth cation-containing basic catalysts obtained by an alginate route. Catalysis Today, 189(1), 28-34. doi:10.1016/j.cattod.2012.03.072 es_ES
dc.description.references Primo, A., Liebel, M., & Quignard, F. (2009). Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 21(4), 621-627. doi:10.1021/cm8020337 es_ES
dc.description.references Chtchigrovsky, M., Lin, Y., Ouchaou, K., Chaumontet, M., Robitzer, M., Quignard, F., & Taran, F. (2012). Dramatic Effect of the Gelling Cation on the Catalytic Performances of Alginate-Supported Palladium Nanoparticles for the Suzuki–Miyaura Reaction. Chemistry of Materials, 24(8), 1505-1510. doi:10.1021/cm3003595 es_ES
dc.description.references Agulhon, P., Markova, V., Robitzer, M., Quignard, F., & Mineva, T. (2012). Structure of Alginate Gels: Interaction of Diuronate Units with Divalent Cations from Density Functional Calculations. Biomacromolecules, 13(6), 1899-1907. doi:10.1021/bm300420z es_ES
dc.description.references Pal, A., Esumi, K., & Pal, T. (2005). Preparation of nanosized gold particles in a biopolymer using UV photoactivation. Journal of Colloid and Interface Science, 288(2), 396-401. doi:10.1016/j.jcis.2005.03.048 es_ES
dc.description.references Guo, R., Li, R., Li, X., Zhang, L., Jiang, X., & Liu, B. (2009). Dual-Functional Alginic Acid Hybrid Nanospheres for Cell Imaging and Drug Delivery. Small, 5(6), 709-717. doi:10.1002/smll.200801375 es_ES
dc.description.references Valentin, R., Horga, R., Bonelli, B., Garrone, E., Di Renzo, F., & Quignard, F. (2006). FTIR Spectroscopy of NH3on Acidic and Ionotropic Alginate Aerogels. Biomacromolecules, 7(3), 877-882. doi:10.1021/bm050559x es_ES
dc.description.references Robitzer, M., David, L., Rochas, C., Di Renzo, F., & Quignard, F. (2008). Supercritically-Dried Alginate Aerogels Retain the Fibrillar Structure of the Hydrogels. Macromolecular Symposia, 273(1), 80-84. doi:10.1002/masy.200851311 es_ES
dc.description.references Gomes Silva, C., Juárez, R., Marino, T., Molinari, R., & García, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133(3), 595-602. doi:10.1021/ja1086358 es_ES
dc.description.references Xu, H., Chen, X., Ouyang, S., Kako, T., & Ye, J. (2012). Size-Dependent Mie’s Scattering Effect on TiO2Spheres for the Superior Photoactivity of H2Evolution. The Journal of Physical Chemistry C, 116(5), 3833-3839. doi:10.1021/jp209378t es_ES
dc.description.references Medda, S. K., De, S., & De, G. (2005). Synthesis of Au nanoparticle doped SiO2–TiO2 films: tuning of Au surface plasmon band position through controlling the refractive index. Journal of Materials Chemistry, 15(32), 3278. doi:10.1039/b506399j es_ES
dc.description.references Thomas, K. G., Zajicek, J., & Kamat, P. V. (2002). Surface Binding Properties of Tetraoctylammonium Bromide-Capped Gold Nanoparticles. Langmuir, 18(9), 3722-3727. doi:10.1021/la015669d es_ES
dc.description.references Miller, M. M., & Lazarides, A. A. (2005). Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment. The Journal of Physical Chemistry B, 109(46), 21556-21565. doi:10.1021/jp054227y es_ES
dc.description.references Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b es_ES
dc.description.references Ma, T., Akiyama, M., Abe, E., & Imai, I. (2005). High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode. Nano Letters, 5(12), 2543-2547. doi:10.1021/nl051885l es_ES
dc.description.references Ren, M., Ravikrishna, R., & Valsaraj, K. T. (2006). Photocatalytic Degradation of Gaseous Organic Species on Photonic Band-Gap Titania. Environmental Science & Technology, 40(22), 7029-7033. doi:10.1021/es061045o es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem