Mostrar el registro sencillo del ítem
dc.contributor.author | Buaki-Sogo, Mireia | es_ES |
dc.contributor.author | Serra, Marco | es_ES |
dc.contributor.author | Primo Arnau, Ana María | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2013-06-10T12:15:09Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1867-3880 | |
dc.identifier.uri | http://hdl.handle.net/10251/29573 | |
dc.description.abstract | [EN] A simple and reliable procedure to prepare TiO2 and Au/TiO2 samples with high photocatalytic activity for hydrogen generation from water/methanol mixtures is reported, which uses natural alginate as the templating agent. Aqueous solutions of sodium alginate are flocculated as beads by Ti=O2+ ions in the presence or absence of AuCl4 . The resulting alginate beads containing approximately 25 wt% of Ti and various Au contents are dehydrated by ethanol washings before drying under supercritical CO2 conditions. The key step in the preparation method is to obtain Au/Ti-containing alginate aerogels of approximately 700 m2g 1 Brunauer¿Emmett¿Teller surface area. The surface area of the TiO2 and Au/TiO2 samples obtained after calcination of the organic biopolymer at 4508C under air ranges from 187 to 136 m2g 1, and the Au content has been varied from 1.3 to 0.05 wt% to optimize the photocatalytic activity of the samples. TiO2 forms in the anatase phase according to XRD and Raman spectroscopy. The highest activity Au/TiO2 sample (containing 0.556 wt% of Au) prepared by means of the biopolymer templating method was approximately eight times more active for hydrogen generation using a solar simulator than was an analogous Au-containing TiO2 P25 sample prepared by means of the conventional deposition¿precipitation method. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Science and Education (CTQ2012-32315 and CTQ2010-18671) is gratefully acknowledged. Mireia Buaki-Sogo also thank the Spanish Ministry for a postgraduate scholarship (CTQ2007-67805). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | WILEY-VCH Verlag GmbH & Co. KGaA, | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Alginate | es_ES |
dc.subject | Gold | es_ES |
dc.subject | Hydrogen | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject | Titanium | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Alginate as template in the preparation of active titania photocatalysts | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cctc.201200386 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CTQ2007-67805/ES/APLICACION DE NUEVOS DERIVADOS DEL PPV ENCAPSULADOS EN MATRICES DE SILICE EN LA PREPARACION DE TRANSISTORES DE CAMPO ELECTRICO Y RECTIFICADORES A ESCALA MICROMETRICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Buaki-Sogo, M.; Serra, M.; Primo Arnau, AM.; Alvaro Rodríguez, MM.; García Gómez, H. (2012). Alginate as template in the preparation of active titania photocatalysts. ChemCatChem. 5(2):513-518. https://doi.org/10.1002/cctc.201200386 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/cctc.201200386 | es_ES |
dc.description.upvformatpinicio | 513 | es_ES |
dc.description.upvformatpfin | 518 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 229703 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kim, Y.-Y., Neudeck, C., & Walsh, D. (2010). Biopolymer templating as synthetic route to functional metal oxide nanoparticles and porous sponges. Polymer Chemistry, 1(3), 272. doi:10.1039/b9py00366e | es_ES |
dc.description.references | Kimling, M. C., & Caruso, R. A. (2012). Sol–gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. Journal of Materials Chemistry, 22(9), 4073. doi:10.1039/c2jm15720a | es_ES |
dc.description.references | El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740 | es_ES |
dc.description.references | El Kadib, A., & Bousmina, M. (2012). Chitosan Bio-Based Organic-Inorganic Hybrid Aerogel Microspheres. Chemistry - A European Journal, 18(27), 8264-8277. doi:10.1002/chem.201104006 | es_ES |
dc.description.references | Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498 | es_ES |
dc.description.references | Stokke, B. T., Smidsroed, O., Bruheim, P., & Skjaak-Braek, G. (1991). Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macromolecules, 24(16), 4637-4645. doi:10.1021/ma00016a026 | es_ES |
dc.description.references | Stokke, B. T., Draget, K. I., Smidsrød, O., Yuguchi, Y., Urakawa, H., & Kajiwara, K. (2000). Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 1. Ca−Alginate Gels. Macromolecules, 33(5), 1853-1863. doi:10.1021/ma991559q | es_ES |
dc.description.references | Agulhon, P., Constant, S., Chiche, B., Lartigue, L., Larionova, J., Di Renzo, F., & Quignard, F. (2012). Controlled synthesis from alginate gels of cobalt–manganese mixed oxide nanocrystals with peculiar magnetic properties. Catalysis Today, 189(1), 49-54. doi:10.1016/j.cattod.2012.03.052 | es_ES |
dc.description.references | Monakhova, Y., Agulhon, P., Quignard, F., Tanchoux, N., & Tichit, D. (2012). New mixed lanthanum- and alkaline-earth cation-containing basic catalysts obtained by an alginate route. Catalysis Today, 189(1), 28-34. doi:10.1016/j.cattod.2012.03.072 | es_ES |
dc.description.references | Primo, A., Liebel, M., & Quignard, F. (2009). Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 21(4), 621-627. doi:10.1021/cm8020337 | es_ES |
dc.description.references | Chtchigrovsky, M., Lin, Y., Ouchaou, K., Chaumontet, M., Robitzer, M., Quignard, F., & Taran, F. (2012). Dramatic Effect of the Gelling Cation on the Catalytic Performances of Alginate-Supported Palladium Nanoparticles for the Suzuki–Miyaura Reaction. Chemistry of Materials, 24(8), 1505-1510. doi:10.1021/cm3003595 | es_ES |
dc.description.references | Agulhon, P., Markova, V., Robitzer, M., Quignard, F., & Mineva, T. (2012). Structure of Alginate Gels: Interaction of Diuronate Units with Divalent Cations from Density Functional Calculations. Biomacromolecules, 13(6), 1899-1907. doi:10.1021/bm300420z | es_ES |
dc.description.references | Pal, A., Esumi, K., & Pal, T. (2005). Preparation of nanosized gold particles in a biopolymer using UV photoactivation. Journal of Colloid and Interface Science, 288(2), 396-401. doi:10.1016/j.jcis.2005.03.048 | es_ES |
dc.description.references | Guo, R., Li, R., Li, X., Zhang, L., Jiang, X., & Liu, B. (2009). Dual-Functional Alginic Acid Hybrid Nanospheres for Cell Imaging and Drug Delivery. Small, 5(6), 709-717. doi:10.1002/smll.200801375 | es_ES |
dc.description.references | Valentin, R., Horga, R., Bonelli, B., Garrone, E., Di Renzo, F., & Quignard, F. (2006). FTIR Spectroscopy of NH3on Acidic and Ionotropic Alginate Aerogels. Biomacromolecules, 7(3), 877-882. doi:10.1021/bm050559x | es_ES |
dc.description.references | Robitzer, M., David, L., Rochas, C., Di Renzo, F., & Quignard, F. (2008). Supercritically-Dried Alginate Aerogels Retain the Fibrillar Structure of the Hydrogels. Macromolecular Symposia, 273(1), 80-84. doi:10.1002/masy.200851311 | es_ES |
dc.description.references | Gomes Silva, C., Juárez, R., Marino, T., Molinari, R., & García, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133(3), 595-602. doi:10.1021/ja1086358 | es_ES |
dc.description.references | Xu, H., Chen, X., Ouyang, S., Kako, T., & Ye, J. (2012). Size-Dependent Mie’s Scattering Effect on TiO2Spheres for the Superior Photoactivity of H2Evolution. The Journal of Physical Chemistry C, 116(5), 3833-3839. doi:10.1021/jp209378t | es_ES |
dc.description.references | Medda, S. K., De, S., & De, G. (2005). Synthesis of Au nanoparticle doped SiO2–TiO2 films: tuning of Au surface plasmon band position through controlling the refractive index. Journal of Materials Chemistry, 15(32), 3278. doi:10.1039/b506399j | es_ES |
dc.description.references | Thomas, K. G., Zajicek, J., & Kamat, P. V. (2002). Surface Binding Properties of Tetraoctylammonium Bromide-Capped Gold Nanoparticles. Langmuir, 18(9), 3722-3727. doi:10.1021/la015669d | es_ES |
dc.description.references | Miller, M. M., & Lazarides, A. A. (2005). Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment. The Journal of Physical Chemistry B, 109(46), 21556-21565. doi:10.1021/jp054227y | es_ES |
dc.description.references | Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b | es_ES |
dc.description.references | Ma, T., Akiyama, M., Abe, E., & Imai, I. (2005). High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode. Nano Letters, 5(12), 2543-2547. doi:10.1021/nl051885l | es_ES |
dc.description.references | Ren, M., Ravikrishna, R., & Valsaraj, K. T. (2006). Photocatalytic Degradation of Gaseous Organic Species on Photonic Band-Gap Titania. Environmental Science & Technology, 40(22), 7029-7033. doi:10.1021/es061045o | es_ES |