Mostrar el registro sencillo del ítem
dc.contributor.author | Sastre Calabuig, Francesc | es_ES |
dc.contributor.author | Fornes Seguí, Vicente | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2013-06-10T12:34:56Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.uri | http://hdl.handle.net/10251/29580 | |
dc.description.abstract | [EN] Deep-UV photolysis (either 165 or 185 nm) of surface hydroxy groups leads to homolytic O H bondcleavage with the generation of oxyl radicals that can initiate the room-temperature radical-chain methane activation. Whilst in the absence of oxygen, radical coupling reactions to give lowmolecular-weight alkanes are observed in the gas phase, the presence of some oxygen quenches these radicals and increases the selectivity towards C1 oxygenates (methanol, formaldehyde, and formic acid species). The nature of the solid influences the efficiency of the photochemical process and the distribution between products in the gas and solid phases. Using Beta-, delaminated ITQ2 and ITQ6, and medium-pore ZSM5 zeolites, mesoporous MCM41 silicates, and non-porous TiO2, we observed that confinement and porosity increased the proportion of C1 oxygenates adsorbed onto the solid and reduced the contribution of the gasphase products. In addition, the presence of aluminum in the zeolite framework, which is responsible for the generation of acid sites, increased overoxidation of methanol and methoxy groups into formaldehyde and formic acids. For a given amount of methane and unchanged photolysis conditions, the conversion increased with the amount of the solid used as photocatalyst. In this way, methane conversions of up to 7% were achieved for the 185 nm photolysis of methane for 1 h with a 76 MJmol 1 energy consumption. | es_ES |
dc.description.sponsorship | Financial support by the Spanish MICINN (Consolider Ingenio MULTI-CAT and CTQ2009-11586) is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation | MICINN/CTQ2009-11586 | |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Methane | es_ES |
dc.subject | Oxygenates | es_ES |
dc.subject | Photolysis | es_ES |
dc.subject | Solid-state reactions | es_ES |
dc.subject | Surface chemistry | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Conversion of Methane into C1 Oxygenates by Deep-UV Photolysis on SolidSurfaces: Influence of the Nature of the Solid and Optimization of PhotolysisConditions | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/chem.201102273 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Sastre Calabuig, F.; Fornes Seguí, V.; Corma Canós, A.; García Gómez, H. (2012). Conversion of Methane into C1 Oxygenates by Deep-UV Photolysis on SolidSurfaces: Influence of the Nature of the Solid and Optimization of PhotolysisConditions. Chemistry - A European Journal. 18(6):1820-1825. doi:10.1002/chem.201102273 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/chem.201102273 | es_ES |
dc.description.upvformatpinicio | 1820 | es_ES |
dc.description.upvformatpfin | 1825 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 234692 | |
dc.identifier.pmid | 22223585 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación |