- -

A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae

Show full item record

Barreto, L.; Canadell, D.; Petrezselyova, S.; Navarrete, C.; Maresova, L.; Pérez Valle, J.; Herrera, R.... (2011). A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae. 10(9):1241-1250. https://doi.org/10.1128/EC.05029-11

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/29635

Files in this item

Item Metadata

Title: A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae
Author: Barreto, Lina Canadell, David Petrezselyova, Silvia Navarrete, Clara Maresova, Lydie Pérez Valle, Jorge Herrera, Rito Olier, Ivan Giraldo, Jesus Sychrova, Hana Yenush, Lynne Ramos, Jose Arino, Joaquin
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Potassium homeostasis is crucial for living cells. In the yeast Saccharomyces cerevisiae, the uptake of potassium is driven by the electrochemical gradient generated by the Pma1 H +-ATPase, and this process represents ...[+]
Subjects: Cation transport protein , Hygromycin B , PMA1 protein, S cerevisiae , Potassium , Proton transporting adenosine triphosphatase , Quaternary ammonium derivative , Saccharomyces cerevisiae protein , Spermine , Tetramethylammonium , TRK1 protein, S cerevisiae , Article , Cell membrane potential , Genetics , Homeostasis , Metabolism , Mutation , Phenotype , Physiology , Saccharomyces cerevisiae , Transport at the cellular level , Biological Transport , Cation Transport Proteins , Membrane Potentials , Proton-Translocating ATPases , Quaternary Ammonium Compounds , Saccharomyces cerevisiae Proteins
Copyrigths: Cerrado
Source:
(issn: 1535-9778 )
DOI: 10.1128/EC.05029-11
Publisher:
American Society for Microbiology
Publisher version: http://ec.asm.org/content/10/9/1241.full.pdf+html
Project ID:
info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-01/ES/VIAS DE TRANSDUCCION DE SEÑAL QUE CONTROLAN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURAS/
...[+]
info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-01/ES/VIAS DE TRANSDUCCION DE SEÑAL QUE CONTROLAN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURAS/
info:eu-repo/grantAgreement/CAS//IAA500110801/CZ/Role of Na/H antiporters in cell physiology - transporters teamwork in intracellular pH and K+ homeostasis/
info:eu-repo/grantAgreement/CAS//AV0Z50110509/
info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-1-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/
info:eu-repo/grantAgreement/MICINN//EUI2009-04147/ES/MODELADO DE REDES GENICAS Y DE PROTEINAS RELEVANTES EN LA HOMEOSTASIS DE CATIONES EN LEVADURA/
info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-2-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/
info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-03/ES/REGULACION DE LOS FLUJOS DE CATIONES COMO DETERMINANTES DE TOLERANCIA SALINA EN LEVADURAS/
info:eu-repo/grantAgreement/MSMT//LC531/
[-]
Thanks:
This work was supported by grants BFU2008-04188-C03-01, GEN2006-27748-C2-1-E/SYS (SysMo ERA-NET), and EUI200904147 (SysMo2 ERA-NET) to J.A.; GEN2006-27748-C2-2-E/SYS (SysMo ERA-NET) and BFU2008-04188-C03-03 to J.R.; and ...[+]
Type: Artículo

References

Bañuelos, M. A., Ruiz, M. C., Jiménez, A., Souciet, J.-L., Potier, S., & Ramos, J. (2001). Role of the Nha1 antiporter in regulating K+influx inSaccharomyces cerevisiae. Yeast, 19(1), 9-15. doi:10.1002/yea.799

Calahorra, M., Lozano, C., Sánchez, N. S., & Peña, A. (2011). Ketoconazole and miconazole alter potassium homeostasis in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808(1), 433-445. doi:10.1016/j.bbamem.2010.09.025

Casado, C., Yenush, L., Melero, C., del Carmen Ruiz, M., Serrano, R., Pérez-Valle, J., … Ramos, J. (2010). Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Letters, 584(11), 2415-2420. doi:10.1016/j.febslet.2010.04.042 [+]
Bañuelos, M. A., Ruiz, M. C., Jiménez, A., Souciet, J.-L., Potier, S., & Ramos, J. (2001). Role of the Nha1 antiporter in regulating K+influx inSaccharomyces cerevisiae. Yeast, 19(1), 9-15. doi:10.1002/yea.799

Calahorra, M., Lozano, C., Sánchez, N. S., & Peña, A. (2011). Ketoconazole and miconazole alter potassium homeostasis in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808(1), 433-445. doi:10.1016/j.bbamem.2010.09.025

Casado, C., Yenush, L., Melero, C., del Carmen Ruiz, M., Serrano, R., Pérez-Valle, J., … Ramos, J. (2010). Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Letters, 584(11), 2415-2420. doi:10.1016/j.febslet.2010.04.042

Daicho, K., Makino, N., Hiraki, T., Ueno, M., Uritani, M., Abe, F., & Ushimaru, T. (2009). Sorting defects of the tryptophan permease Tat2 in anerg2yeast mutant. FEMS Microbiology Letters, 298(2), 218-227. doi:10.1111/j.1574-6968.2009.01722.x

Daicho, K., Maruyama, H., Suzuki, A., Ueno, M., Uritani, M., & Ushimaru, T. (2007). The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768(7), 1681-1690. doi:10.1016/j.bbamem.2007.03.022

De Nadal, E., Clotet, J., Posas, F., Serrano, R., Gomez, N., & Arino, J. (1998). The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences, 95(13), 7357-7362. doi:10.1073/pnas.95.13.7357

Eraso, P., Mazón, M. J., & Portillo, F. (2006). Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(2), 164-170. doi:10.1016/j.bbamem.2006.01.010

Erez, O., & Kahana, C. (2001). Screening for Modulators of Spermine Tolerance Identifies Sky1, the SR Protein Kinase of Saccharomyces cerevisiae, as a Regulator of Polyamine Transport and Ion Homeostasis. Molecular and Cellular Biology, 21(1), 175-184. doi:10.1128/mcb.21.1.175-184.2001

Erez, O., & Kahana, C. (2002). Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiaetrk1Δtrk2Δ mutant cells exert dual effect on ion homeostasis. Biochemical and Biophysical Research Communications, 295(5), 1142-1149. doi:10.1016/s0006-291x(02)00823-9

Estrada, E., Agostinis, P., Vandenheede, J. R., Goris, J., Merlevede, W., François, J., … Ghislain, M. (1996). Phosphorylation of Yeast Plasma Membrane H+-ATPase by Casein Kinase I. Journal of Biological Chemistry, 271(50), 32064-32072. doi:10.1074/jbc.271.50.32064

Feng, Y., & Davis, N. G. (2000). Akr1p and the Type I Casein Kinases Act prior to the Ubiquitination Step of Yeast Endocytosis: Akr1p Is Required for Kinase Localization to the Plasma Membrane. Molecular and Cellular Biology, 20(14), 5350-5359. doi:10.1128/mcb.20.14.5350-5359.2000

Ferrando, A., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1995). Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15(10), 5470-5481. doi:10.1128/mcb.15.10.5470

Forment, J., Mulet, J. M., Vicente, O., & Serrano, R. (2002). The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1565(1), 36-40. doi:10.1016/s0005-2736(02)00503-5

Gaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848

Gadura, N., Robinson, L. C., & Michels, C. A. (2005). Glc7–Reg1 Phosphatase Signals to Yck1,2 Casein Kinase 1 to Regulate Transport Activity and Glucose-Induced Inactivation of Saccharomyces Maltose Permease. Genetics, 172(3), 1427-1439. doi:10.1534/genetics.105.051698

GILBERT, W., SIEBEL, C. W., & GUTHRIE, C. (2001). Phosphorylation by Sky1p promotes Npl3p shuttling and mRNA dissociation. RNA, 7(2), 302-313. doi:10.1017/s1355838201002369

Goossens, A., de la Fuente, N., Forment, J., Serrano, R., & Portillo, F. (2000). Regulation of Yeast H+-ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters. Molecular and Cellular Biology, 20(20), 7654-7661. doi:10.1128/mcb.20.20.7654-7661.2000

Grossmann, G., Opekarova, M., Novakova, L., Stolz, J., & Tanner, W. (2006). Lipid Raft-Based Membrane Compartmentation of a Plant Transport Protein Expressed inSaccharomyces cerevisiae. Eukaryotic Cell, 5(6), 945-953. doi:10.1128/ec.00206-05

Haro, R., & Rodrı́guez-Navarro, A. (2002). Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1564(1), 114-122. doi:10.1016/s0005-2736(02)00408-x

Hess, D. C., Lu, W., Rabinowitz, J. D., & Botstein, D. (2006). Ammonium Toxicity and Potassium Limitation in Yeast. PLoS Biology, 4(11), e351. doi:10.1371/journal.pbio.0040351

Hillenmeyer, M. E., Fung, E., Wildenhain, J., Pierce, S. E., Hoon, S., Lee, W., … Giaever, G. (2008). The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes. Science, 320(5874), 362-365. doi:10.1126/science.1150021

Ingvarsdottir, K., Krogan, N. J., Emre, N. C. T., Wyce, A., Thompson, N. J., Emili, A., … Berger, S. L. (2005). H2B Ubiquitin Protease Ubp8 and Sgf11 Constitute a Discrete Functional Module within the Saccharomyces cerevisiae SAGA Complex. Molecular and Cellular Biology, 25(3), 1162-1172. doi:10.1128/mcb.25.3.1162-1172.2005

Ko, C. H., & Gaber, R. F. (1991). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology, 11(8), 4266-4273. doi:10.1128/mcb.11.8.4266

Kuo, M. H., & Grayhack, E. (1994). A library of yeast genomic MCM1 binding sites contains genes involved in cell cycle control, cell wall and membrane structure, and metabolism. Molecular and Cellular Biology, 14(1), 348-359. doi:10.1128/mcb.14.1.348

Madrid, R., Gómez, M. J., Ramos, J., & Rodrı́guez-Navarro, A. (1998). Ectopic Potassium Uptake intrk1 trk2Mutants ofSaccharomyces cerevisiaeCorrelates with a Highly Hyperpolarized Membrane Potential. Journal of Biological Chemistry, 273(24), 14838-14844. doi:10.1074/jbc.273.24.14838

Maláč, J., Urbánková, E., Sigler, K., & Gášková, D. (2005). Activity of yeast multidrug resistance pumps during growth is controlled by carbon source and the composition of growth-depleted medium: DiS-C3(3) fluorescence assay. The International Journal of Biochemistry & Cell Biology, 37(12), 2536-2543. doi:10.1016/j.biocel.2005.06.005

Malinsky, J., Opekarová, M., & Tanner, W. (2010). The lateral compartmentation of the yeast plasma membrane. Yeast, 27(8), 473-478. doi:10.1002/yea.1772

Manlandro, C. M. A., Haydon, D. H., & Rosenwald, A. G. (2005). Ability of Sit4p To Promote K+Efflux via Nha1p Is Modulated by Sap155p and Sap185p. Eukaryotic Cell, 4(6), 1041-1049. doi:10.1128/ec.4.6.1041-1049.2005

Maresova, L., Muend, S., Zhang, Y.-Q., Sychrova, H., & Rao, R. (2008). Membrane Hyperpolarization Drives Cation Influx and Fungicidal Activity of Amiodarone. Journal of Biological Chemistry, 284(5), 2795-2802. doi:10.1074/jbc.m806693200

Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328

Munson, A. M. (2004). Yeast ARL1 encodes a regulator of K+ influx. Journal of Cell Science, 117(11), 2309-2320. doi:10.1242/jcs.01050

Perez-Valle, J., Jenkins, H., Merchan, S., Montiel, V., Ramos, J., Sharma, S., … Yenush, L. (2007). Key Role for Intracellular K+ and Protein Kinases Sat4/Hal4 and Hal5 in the Plasma Membrane Stabilization of Yeast Nutrient Transporters. Molecular and Cellular Biology, 27(16), 5725-5736. doi:10.1128/mcb.01375-06

Porat, Z., Wender, N., Erez, O., & Kahana, C. (2005). Mechanism of polyamine tolerance in yeast: novel regulators and insights. Cellular and Molecular Life Sciences, 62(24), 3106-3116. doi:10.1007/s00018-005-5341-7

Posas, F., Camps, M., & Ario, J. (1995). The PPZ Protein Phosphatases Are Important Determinants of Salt Tolerance in Yeast Cells. Journal of Biological Chemistry, 270(22), 13036-13041. doi:10.1074/jbc.270.22.13036

Proszynski, T. J., Klemm, R. W., Gravert, M., Hsu, P. P., Gloor, Y., Wagner, J., … Walch-Solimena, C. (2005). A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proceedings of the National Academy of Sciences, 102(50), 17981-17986. doi:10.1073/pnas.0509107102

Ramos, J., Alijo, R., Haro, R., & Rodriguez-Navarro, A. (1994). TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. Journal of Bacteriology, 176(1), 249-252. doi:10.1128/jb.176.1.249-252.1994

Rao, R., Drummond-Barbosa, D., & Slayman, C. W. (1993). Transcriptional regulation by glucose of the yeastPMA1 gene encoding the plasma membrane H+-ATPase. Yeast, 9(10), 1075-1084. doi:10.1002/yea.320091006

Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1

Ruiz, A., Yenush, L., & Ariño, J. (2003). Regulation ofENA1Na+-ATPase Gene Expression by the Ppz1 Protein Phosphatase Is Mediated by the Calcineurin Pathway. Eukaryotic Cell, 2(5), 937-948. doi:10.1128/ec.2.5.937-948.2003

SERRANO, R. (1980). Effect of ATPase Inhibitors on the Proton Pump of Respiratory-Deficient Yeast. European Journal of Biochemistry, 105(2), 419-424. doi:10.1111/j.1432-1033.1980.tb04516.x

Serrano, R., Kielland-Brandt, M. C., & Fink, G. R. (1986). Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature, 319(6055), 689-693. doi:10.1038/319689a0

Serrano, R., Ruiz, A., Bernal, D., Chambers, J. R., & Ariño, J. (2002). The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Molecular Microbiology, 46(5), 1319-1333. doi:10.1046/j.1365-2958.2002.03246.x

Venancio, T. M., Balaji, S., & Aravind, L. (2009). High-confidence mapping of chemical compounds and protein complexes reveals novel aspects of chemical stress response in yeast. Mol. BioSyst., 6(1), 175-181. doi:10.1039/b911821g

Wu, P.-Y. J., & Winston, F. (2002). Analysis of Spt7 Function in the Saccharomyces cerevisiae SAGA Coactivator Complex. Molecular and Cellular Biology, 22(15), 5367-5379. doi:10.1128/mcb.22.15.5367-5379.2002

Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005

Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record