Mostrar el registro sencillo del ítem
dc.contributor.author | Barreto, Lina | es_ES |
dc.contributor.author | Canadell, David | es_ES |
dc.contributor.author | Petrezselyova, Silvia | es_ES |
dc.contributor.author | Navarrete, Clara | es_ES |
dc.contributor.author | Maresova, Lydie | es_ES |
dc.contributor.author | Pérez Valle, Jorge | es_ES |
dc.contributor.author | Herrera, Rito | es_ES |
dc.contributor.author | Olier, Ivan | es_ES |
dc.contributor.author | Giraldo, Jesus | es_ES |
dc.contributor.author | Sychrova, Hana | es_ES |
dc.contributor.author | Yenush, Lynne | es_ES |
dc.contributor.author | Ramos, Jose | es_ES |
dc.contributor.author | Arino, Joaquin | |
dc.date.accessioned | 2013-06-11T12:22:58Z | |
dc.date.available | 2013-06-11T12:22:58Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1535-9778 | |
dc.identifier.uri | http://hdl.handle.net/10251/29635 | |
dc.description.abstract | [EN] Potassium homeostasis is crucial for living cells. In the yeast Saccharomyces cerevisiae, the uptake of potassium is driven by the electrochemical gradient generated by the Pma1 H +-ATPase, and this process represents a major consumer of the gradient. We considered that any mutation resulting in an alteration of the electrochemical gradient could give rise to anomalous sensitivity to any cationic drug independently of its toxicity mechanism. Here, we describe a genomewide screen for mutants that present altered tolerance to hygromycin B, spermine, and tetramethylammonium. Two hundred twenty-six mutant strains displayed altered tolerance to all three drugs (202 hypersensitive and 24 hypertolerant), and more than 50% presented a strong or moderate growth defect at a limiting potassium concentration (1 mM). Functional groups such as protein kinases and phosphatases, intracellular trafficking, transcription, or cell cycle and DNA processing were enriched. Essentially, our screen has identified a substantial number of genes that were not previously described to play a direct or indirect role in potassium homeostasis. A subset of 27 representative mutants were selected and subjected to diverse biochemical tests that, in some cases, allowed us to postulate the basis for the observed phenotypes. © 2011, American Society for Microbiology. All Rights Reserved. | es_ES |
dc.description.sponsorship | This work was supported by grants BFU2008-04188-C03-01, GEN2006-27748-C2-1-E/SYS (SysMo ERA-NET), and EUI200904147 (SysMo2 ERA-NET) to J.A.; GEN2006-27748-C2-2-E/SYS (SysMo ERA-NET) and BFU2008-04188-C03-03 to J.R.; and BFU2008-04188-C03-03 to L.Y. (Ministry of Science and Innovation, Spain, and FEDER). Work in the laboratory of the Institute of Physiology in Prague was supported by grants MSMT LC531, GA AS CR IAA500110801, and AV0Z 50110509. J.A. was the recipient of an Ajut 2009SGR-1091 and an ICREA academia award (Generalitat de Catalunya). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society for Microbiology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cation transport protein | es_ES |
dc.subject | Hygromycin B | es_ES |
dc.subject | PMA1 protein, S cerevisiae | es_ES |
dc.subject | Potassium | es_ES |
dc.subject | Proton transporting adenosine triphosphatase | es_ES |
dc.subject | Quaternary ammonium derivative | es_ES |
dc.subject | Saccharomyces cerevisiae protein | es_ES |
dc.subject | Spermine | es_ES |
dc.subject | Tetramethylammonium | es_ES |
dc.subject | TRK1 protein, S cerevisiae | es_ES |
dc.subject | Article | es_ES |
dc.subject | Cell membrane potential | es_ES |
dc.subject | Genetics | es_ES |
dc.subject | Homeostasis | es_ES |
dc.subject | Metabolism | es_ES |
dc.subject | Mutation | es_ES |
dc.subject | Phenotype | es_ES |
dc.subject | Physiology | es_ES |
dc.subject | Saccharomyces cerevisiae | es_ES |
dc.subject | Transport at the cellular level | es_ES |
dc.subject | Biological Transport | es_ES |
dc.subject | Cation Transport Proteins | es_ES |
dc.subject | Membrane Potentials | es_ES |
dc.subject | Proton-Translocating ATPases | es_ES |
dc.subject | Quaternary Ammonium Compounds | es_ES |
dc.subject | Saccharomyces cerevisiae Proteins | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1128/EC.05029-11 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-01/ES/VIAS DE TRANSDUCCION DE SEÑAL QUE CONTROLAN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAS//IAA500110801/CZ/Role of Na/H antiporters in cell physiology - transporters teamwork in intracellular pH and K+ homeostasis/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAS//AV0Z50110509/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-1-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//EUI2009-04147/ES/MODELADO DE REDES GENICAS Y DE PROTEINAS RELEVANTES EN LA HOMEOSTASIS DE CATIONES EN LEVADURA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-2-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-03/ES/REGULACION DE LOS FLUJOS DE CATIONES COMO DETERMINANTES DE TOLERANCIA SALINA EN LEVADURAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MSMT//LC531/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Barreto, L.; Canadell, D.; Petrezselyova, S.; Navarrete, C.; Maresova, L.; Pérez Valle, J.; Herrera, R.... (2011). A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae. 10(9):1241-1250. https://doi.org/10.1128/EC.05029-11 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://ec.asm.org/content/10/9/1241.full.pdf+html | es_ES |
dc.description.upvformatpinicio | 1241 | es_ES |
dc.description.upvformatpfin | 1250 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 193971 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Czech Academy of Sciences | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministry of Education, Youth and Sports, República Checa | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.description.references | Bañuelos, M. A., Ruiz, M. C., Jiménez, A., Souciet, J.-L., Potier, S., & Ramos, J. (2001). Role of the Nha1 antiporter in regulating K+influx inSaccharomyces cerevisiae. Yeast, 19(1), 9-15. doi:10.1002/yea.799 | es_ES |
dc.description.references | Calahorra, M., Lozano, C., Sánchez, N. S., & Peña, A. (2011). Ketoconazole and miconazole alter potassium homeostasis in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808(1), 433-445. doi:10.1016/j.bbamem.2010.09.025 | es_ES |
dc.description.references | Casado, C., Yenush, L., Melero, C., del Carmen Ruiz, M., Serrano, R., Pérez-Valle, J., … Ramos, J. (2010). Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Letters, 584(11), 2415-2420. doi:10.1016/j.febslet.2010.04.042 | es_ES |
dc.description.references | Daicho, K., Makino, N., Hiraki, T., Ueno, M., Uritani, M., Abe, F., & Ushimaru, T. (2009). Sorting defects of the tryptophan permease Tat2 in anerg2yeast mutant. FEMS Microbiology Letters, 298(2), 218-227. doi:10.1111/j.1574-6968.2009.01722.x | es_ES |
dc.description.references | Daicho, K., Maruyama, H., Suzuki, A., Ueno, M., Uritani, M., & Ushimaru, T. (2007). The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768(7), 1681-1690. doi:10.1016/j.bbamem.2007.03.022 | es_ES |
dc.description.references | De Nadal, E., Clotet, J., Posas, F., Serrano, R., Gomez, N., & Arino, J. (1998). The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences, 95(13), 7357-7362. doi:10.1073/pnas.95.13.7357 | es_ES |
dc.description.references | Eraso, P., Mazón, M. J., & Portillo, F. (2006). Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(2), 164-170. doi:10.1016/j.bbamem.2006.01.010 | es_ES |
dc.description.references | Erez, O., & Kahana, C. (2001). Screening for Modulators of Spermine Tolerance Identifies Sky1, the SR Protein Kinase of Saccharomyces cerevisiae, as a Regulator of Polyamine Transport and Ion Homeostasis. Molecular and Cellular Biology, 21(1), 175-184. doi:10.1128/mcb.21.1.175-184.2001 | es_ES |
dc.description.references | Erez, O., & Kahana, C. (2002). Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiaetrk1Δtrk2Δ mutant cells exert dual effect on ion homeostasis. Biochemical and Biophysical Research Communications, 295(5), 1142-1149. doi:10.1016/s0006-291x(02)00823-9 | es_ES |
dc.description.references | Estrada, E., Agostinis, P., Vandenheede, J. R., Goris, J., Merlevede, W., François, J., … Ghislain, M. (1996). Phosphorylation of Yeast Plasma Membrane H+-ATPase by Casein Kinase I. Journal of Biological Chemistry, 271(50), 32064-32072. doi:10.1074/jbc.271.50.32064 | es_ES |
dc.description.references | Feng, Y., & Davis, N. G. (2000). Akr1p and the Type I Casein Kinases Act prior to the Ubiquitination Step of Yeast Endocytosis: Akr1p Is Required for Kinase Localization to the Plasma Membrane. Molecular and Cellular Biology, 20(14), 5350-5359. doi:10.1128/mcb.20.14.5350-5359.2000 | es_ES |
dc.description.references | Ferrando, A., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1995). Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15(10), 5470-5481. doi:10.1128/mcb.15.10.5470 | es_ES |
dc.description.references | Forment, J., Mulet, J. M., Vicente, O., & Serrano, R. (2002). The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1565(1), 36-40. doi:10.1016/s0005-2736(02)00503-5 | es_ES |
dc.description.references | Gaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848 | es_ES |
dc.description.references | Gadura, N., Robinson, L. C., & Michels, C. A. (2005). Glc7–Reg1 Phosphatase Signals to Yck1,2 Casein Kinase 1 to Regulate Transport Activity and Glucose-Induced Inactivation of Saccharomyces Maltose Permease. Genetics, 172(3), 1427-1439. doi:10.1534/genetics.105.051698 | es_ES |
dc.description.references | GILBERT, W., SIEBEL, C. W., & GUTHRIE, C. (2001). Phosphorylation by Sky1p promotes Npl3p shuttling and mRNA dissociation. RNA, 7(2), 302-313. doi:10.1017/s1355838201002369 | es_ES |
dc.description.references | Goossens, A., de la Fuente, N., Forment, J., Serrano, R., & Portillo, F. (2000). Regulation of Yeast H+-ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters. Molecular and Cellular Biology, 20(20), 7654-7661. doi:10.1128/mcb.20.20.7654-7661.2000 | es_ES |
dc.description.references | Grossmann, G., Opekarova, M., Novakova, L., Stolz, J., & Tanner, W. (2006). Lipid Raft-Based Membrane Compartmentation of a Plant Transport Protein Expressed inSaccharomyces cerevisiae. Eukaryotic Cell, 5(6), 945-953. doi:10.1128/ec.00206-05 | es_ES |
dc.description.references | Haro, R., & Rodrı́guez-Navarro, A. (2002). Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1564(1), 114-122. doi:10.1016/s0005-2736(02)00408-x | es_ES |
dc.description.references | Hess, D. C., Lu, W., Rabinowitz, J. D., & Botstein, D. (2006). Ammonium Toxicity and Potassium Limitation in Yeast. PLoS Biology, 4(11), e351. doi:10.1371/journal.pbio.0040351 | es_ES |
dc.description.references | Hillenmeyer, M. E., Fung, E., Wildenhain, J., Pierce, S. E., Hoon, S., Lee, W., … Giaever, G. (2008). The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes. Science, 320(5874), 362-365. doi:10.1126/science.1150021 | es_ES |
dc.description.references | Ingvarsdottir, K., Krogan, N. J., Emre, N. C. T., Wyce, A., Thompson, N. J., Emili, A., … Berger, S. L. (2005). H2B Ubiquitin Protease Ubp8 and Sgf11 Constitute a Discrete Functional Module within the Saccharomyces cerevisiae SAGA Complex. Molecular and Cellular Biology, 25(3), 1162-1172. doi:10.1128/mcb.25.3.1162-1172.2005 | es_ES |
dc.description.references | Ko, C. H., & Gaber, R. F. (1991). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology, 11(8), 4266-4273. doi:10.1128/mcb.11.8.4266 | es_ES |
dc.description.references | Kuo, M. H., & Grayhack, E. (1994). A library of yeast genomic MCM1 binding sites contains genes involved in cell cycle control, cell wall and membrane structure, and metabolism. Molecular and Cellular Biology, 14(1), 348-359. doi:10.1128/mcb.14.1.348 | es_ES |
dc.description.references | Madrid, R., Gómez, M. J., Ramos, J., & Rodrı́guez-Navarro, A. (1998). Ectopic Potassium Uptake intrk1 trk2Mutants ofSaccharomyces cerevisiaeCorrelates with a Highly Hyperpolarized Membrane Potential. Journal of Biological Chemistry, 273(24), 14838-14844. doi:10.1074/jbc.273.24.14838 | es_ES |
dc.description.references | Maláč, J., Urbánková, E., Sigler, K., & Gášková, D. (2005). Activity of yeast multidrug resistance pumps during growth is controlled by carbon source and the composition of growth-depleted medium: DiS-C3(3) fluorescence assay. The International Journal of Biochemistry & Cell Biology, 37(12), 2536-2543. doi:10.1016/j.biocel.2005.06.005 | es_ES |
dc.description.references | Malinsky, J., Opekarová, M., & Tanner, W. (2010). The lateral compartmentation of the yeast plasma membrane. Yeast, 27(8), 473-478. doi:10.1002/yea.1772 | es_ES |
dc.description.references | Manlandro, C. M. A., Haydon, D. H., & Rosenwald, A. G. (2005). Ability of Sit4p To Promote K+Efflux via Nha1p Is Modulated by Sap155p and Sap185p. Eukaryotic Cell, 4(6), 1041-1049. doi:10.1128/ec.4.6.1041-1049.2005 | es_ES |
dc.description.references | Maresova, L., Muend, S., Zhang, Y.-Q., Sychrova, H., & Rao, R. (2008). Membrane Hyperpolarization Drives Cation Influx and Fungicidal Activity of Amiodarone. Journal of Biological Chemistry, 284(5), 2795-2802. doi:10.1074/jbc.m806693200 | es_ES |
dc.description.references | Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328 | es_ES |
dc.description.references | Munson, A. M. (2004). Yeast ARL1 encodes a regulator of K+ influx. Journal of Cell Science, 117(11), 2309-2320. doi:10.1242/jcs.01050 | es_ES |
dc.description.references | Perez-Valle, J., Jenkins, H., Merchan, S., Montiel, V., Ramos, J., Sharma, S., … Yenush, L. (2007). Key Role for Intracellular K+ and Protein Kinases Sat4/Hal4 and Hal5 in the Plasma Membrane Stabilization of Yeast Nutrient Transporters. Molecular and Cellular Biology, 27(16), 5725-5736. doi:10.1128/mcb.01375-06 | es_ES |
dc.description.references | Porat, Z., Wender, N., Erez, O., & Kahana, C. (2005). Mechanism of polyamine tolerance in yeast: novel regulators and insights. Cellular and Molecular Life Sciences, 62(24), 3106-3116. doi:10.1007/s00018-005-5341-7 | es_ES |
dc.description.references | Posas, F., Camps, M., & Ario, J. (1995). The PPZ Protein Phosphatases Are Important Determinants of Salt Tolerance in Yeast Cells. Journal of Biological Chemistry, 270(22), 13036-13041. doi:10.1074/jbc.270.22.13036 | es_ES |
dc.description.references | Proszynski, T. J., Klemm, R. W., Gravert, M., Hsu, P. P., Gloor, Y., Wagner, J., … Walch-Solimena, C. (2005). A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proceedings of the National Academy of Sciences, 102(50), 17981-17986. doi:10.1073/pnas.0509107102 | es_ES |
dc.description.references | Ramos, J., Alijo, R., Haro, R., & Rodriguez-Navarro, A. (1994). TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. Journal of Bacteriology, 176(1), 249-252. doi:10.1128/jb.176.1.249-252.1994 | es_ES |
dc.description.references | Rao, R., Drummond-Barbosa, D., & Slayman, C. W. (1993). Transcriptional regulation by glucose of the yeastPMA1 gene encoding the plasma membrane H+-ATPase. Yeast, 9(10), 1075-1084. doi:10.1002/yea.320091006 | es_ES |
dc.description.references | Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1 | es_ES |
dc.description.references | Ruiz, A., Yenush, L., & Ariño, J. (2003). Regulation ofENA1Na+-ATPase Gene Expression by the Ppz1 Protein Phosphatase Is Mediated by the Calcineurin Pathway. Eukaryotic Cell, 2(5), 937-948. doi:10.1128/ec.2.5.937-948.2003 | es_ES |
dc.description.references | SERRANO, R. (1980). Effect of ATPase Inhibitors on the Proton Pump of Respiratory-Deficient Yeast. European Journal of Biochemistry, 105(2), 419-424. doi:10.1111/j.1432-1033.1980.tb04516.x | es_ES |
dc.description.references | Serrano, R., Kielland-Brandt, M. C., & Fink, G. R. (1986). Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature, 319(6055), 689-693. doi:10.1038/319689a0 | es_ES |
dc.description.references | Serrano, R., Ruiz, A., Bernal, D., Chambers, J. R., & Ariño, J. (2002). The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Molecular Microbiology, 46(5), 1319-1333. doi:10.1046/j.1365-2958.2002.03246.x | es_ES |
dc.description.references | Venancio, T. M., Balaji, S., & Aravind, L. (2009). High-confidence mapping of chemical compounds and protein complexes reveals novel aspects of chemical stress response in yeast. Mol. BioSyst., 6(1), 175-181. doi:10.1039/b911821g | es_ES |
dc.description.references | Wu, P.-Y. J., & Winston, F. (2002). Analysis of Spt7 Function in the Saccharomyces cerevisiae SAGA Coactivator Complex. Molecular and Cellular Biology, 22(15), 5367-5379. doi:10.1128/mcb.22.15.5367-5379.2002 | es_ES |
dc.description.references | Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005 | es_ES |
dc.description.references | Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920 | es_ES |