- -

A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barreto, Lina es_ES
dc.contributor.author Canadell, David es_ES
dc.contributor.author Petrezselyova, Silvia es_ES
dc.contributor.author Navarrete, Clara es_ES
dc.contributor.author Maresova, Lydie es_ES
dc.contributor.author Pérez Valle, Jorge es_ES
dc.contributor.author Herrera, Rito es_ES
dc.contributor.author Olier, Ivan es_ES
dc.contributor.author Giraldo, Jesus es_ES
dc.contributor.author Sychrova, Hana es_ES
dc.contributor.author Yenush, Lynne es_ES
dc.contributor.author Ramos, Jose es_ES
dc.contributor.author Arino, Joaquin
dc.date.accessioned 2013-06-11T12:22:58Z
dc.date.available 2013-06-11T12:22:58Z
dc.date.issued 2011
dc.identifier.issn 1535-9778
dc.identifier.uri http://hdl.handle.net/10251/29635
dc.description.abstract [EN] Potassium homeostasis is crucial for living cells. In the yeast Saccharomyces cerevisiae, the uptake of potassium is driven by the electrochemical gradient generated by the Pma1 H +-ATPase, and this process represents a major consumer of the gradient. We considered that any mutation resulting in an alteration of the electrochemical gradient could give rise to anomalous sensitivity to any cationic drug independently of its toxicity mechanism. Here, we describe a genomewide screen for mutants that present altered tolerance to hygromycin B, spermine, and tetramethylammonium. Two hundred twenty-six mutant strains displayed altered tolerance to all three drugs (202 hypersensitive and 24 hypertolerant), and more than 50% presented a strong or moderate growth defect at a limiting potassium concentration (1 mM). Functional groups such as protein kinases and phosphatases, intracellular trafficking, transcription, or cell cycle and DNA processing were enriched. Essentially, our screen has identified a substantial number of genes that were not previously described to play a direct or indirect role in potassium homeostasis. A subset of 27 representative mutants were selected and subjected to diverse biochemical tests that, in some cases, allowed us to postulate the basis for the observed phenotypes. © 2011, American Society for Microbiology. All Rights Reserved. es_ES
dc.description.sponsorship This work was supported by grants BFU2008-04188-C03-01, GEN2006-27748-C2-1-E/SYS (SysMo ERA-NET), and EUI200904147 (SysMo2 ERA-NET) to J.A.; GEN2006-27748-C2-2-E/SYS (SysMo ERA-NET) and BFU2008-04188-C03-03 to J.R.; and BFU2008-04188-C03-03 to L.Y. (Ministry of Science and Innovation, Spain, and FEDER). Work in the laboratory of the Institute of Physiology in Prague was supported by grants MSMT LC531, GA AS CR IAA500110801, and AV0Z 50110509. J.A. was the recipient of an Ajut 2009SGR-1091 and an ICREA academia award (Generalitat de Catalunya). en_EN
dc.language Inglés es_ES
dc.publisher American Society for Microbiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cation transport protein es_ES
dc.subject Hygromycin B es_ES
dc.subject PMA1 protein, S cerevisiae es_ES
dc.subject Potassium es_ES
dc.subject Proton transporting adenosine triphosphatase es_ES
dc.subject Quaternary ammonium derivative es_ES
dc.subject Saccharomyces cerevisiae protein es_ES
dc.subject Spermine es_ES
dc.subject Tetramethylammonium es_ES
dc.subject TRK1 protein, S cerevisiae es_ES
dc.subject Article es_ES
dc.subject Cell membrane potential es_ES
dc.subject Genetics es_ES
dc.subject Homeostasis es_ES
dc.subject Metabolism es_ES
dc.subject Mutation es_ES
dc.subject Phenotype es_ES
dc.subject Physiology es_ES
dc.subject Saccharomyces cerevisiae es_ES
dc.subject Transport at the cellular level es_ES
dc.subject Biological Transport es_ES
dc.subject Cation Transport Proteins es_ES
dc.subject Membrane Potentials es_ES
dc.subject Proton-Translocating ATPases es_ES
dc.subject Quaternary Ammonium Compounds es_ES
dc.subject Saccharomyces cerevisiae Proteins es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1128/EC.05029-11
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-01/ES/VIAS DE TRANSDUCCION DE SEÑAL QUE CONTROLAN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAS//IAA500110801/CZ/Role of Na/H antiporters in cell physiology - transporters teamwork in intracellular pH and K+ homeostasis/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAS//AV0Z50110509/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-1-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//EUI2009-04147/ES/MODELADO DE REDES GENICAS Y DE PROTEINAS RELEVANTES EN LA HOMEOSTASIS DE CATIONES EN LEVADURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//GEN2006-27748-C2-2-E/ES/TRANSLUCENT: Gene interaction networks and models of cation homeostasis in Saccharomyces cerevisiae/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-03/ES/REGULACION DE LOS FLUJOS DE CATIONES COMO DETERMINANTES DE TOLERANCIA SALINA EN LEVADURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSMT//LC531/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Barreto, L.; Canadell, D.; Petrezselyova, S.; Navarrete, C.; Maresova, L.; Pérez Valle, J.; Herrera, R.... (2011). A Genomewide Screen for Tolerance to Cationic Drugs Reveals Genes Important for Potassium Homeostasis in Saccharomyces cerevisiae. 10(9):1241-1250. https://doi.org/10.1128/EC.05029-11 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://ec.asm.org/content/10/9/1241.full.pdf+html es_ES
dc.description.upvformatpinicio 1241 es_ES
dc.description.upvformatpfin 1250 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 193971
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Czech Academy of Sciences es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministry of Education, Youth and Sports, República Checa es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.description.references Bañuelos, M. A., Ruiz, M. C., Jiménez, A., Souciet, J.-L., Potier, S., & Ramos, J. (2001). Role of the Nha1 antiporter in regulating K+influx inSaccharomyces cerevisiae. Yeast, 19(1), 9-15. doi:10.1002/yea.799 es_ES
dc.description.references Calahorra, M., Lozano, C., Sánchez, N. S., & Peña, A. (2011). Ketoconazole and miconazole alter potassium homeostasis in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808(1), 433-445. doi:10.1016/j.bbamem.2010.09.025 es_ES
dc.description.references Casado, C., Yenush, L., Melero, C., del Carmen Ruiz, M., Serrano, R., Pérez-Valle, J., … Ramos, J. (2010). Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Letters, 584(11), 2415-2420. doi:10.1016/j.febslet.2010.04.042 es_ES
dc.description.references Daicho, K., Makino, N., Hiraki, T., Ueno, M., Uritani, M., Abe, F., & Ushimaru, T. (2009). Sorting defects of the tryptophan permease Tat2 in anerg2yeast mutant. FEMS Microbiology Letters, 298(2), 218-227. doi:10.1111/j.1574-6968.2009.01722.x es_ES
dc.description.references Daicho, K., Maruyama, H., Suzuki, A., Ueno, M., Uritani, M., & Ushimaru, T. (2007). The ergosterol biosynthesis inhibitor zaragozic acid promotes vacuolar degradation of the tryptophan permease Tat2p in yeast. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768(7), 1681-1690. doi:10.1016/j.bbamem.2007.03.022 es_ES
dc.description.references De Nadal, E., Clotet, J., Posas, F., Serrano, R., Gomez, N., & Arino, J. (1998). The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences, 95(13), 7357-7362. doi:10.1073/pnas.95.13.7357 es_ES
dc.description.references Eraso, P., Mazón, M. J., & Portillo, F. (2006). Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1758(2), 164-170. doi:10.1016/j.bbamem.2006.01.010 es_ES
dc.description.references Erez, O., & Kahana, C. (2001). Screening for Modulators of Spermine Tolerance Identifies Sky1, the SR Protein Kinase of Saccharomyces cerevisiae, as a Regulator of Polyamine Transport and Ion Homeostasis. Molecular and Cellular Biology, 21(1), 175-184. doi:10.1128/mcb.21.1.175-184.2001 es_ES
dc.description.references Erez, O., & Kahana, C. (2002). Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiaetrk1Δtrk2Δ mutant cells exert dual effect on ion homeostasis. Biochemical and Biophysical Research Communications, 295(5), 1142-1149. doi:10.1016/s0006-291x(02)00823-9 es_ES
dc.description.references Estrada, E., Agostinis, P., Vandenheede, J. R., Goris, J., Merlevede, W., François, J., … Ghislain, M. (1996). Phosphorylation of Yeast Plasma Membrane H+-ATPase by Casein Kinase I. Journal of Biological Chemistry, 271(50), 32064-32072. doi:10.1074/jbc.271.50.32064 es_ES
dc.description.references Feng, Y., & Davis, N. G. (2000). Akr1p and the Type I Casein Kinases Act prior to the Ubiquitination Step of Yeast Endocytosis: Akr1p Is Required for Kinase Localization to the Plasma Membrane. Molecular and Cellular Biology, 20(14), 5350-5359. doi:10.1128/mcb.20.14.5350-5359.2000 es_ES
dc.description.references Ferrando, A., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1995). Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15(10), 5470-5481. doi:10.1128/mcb.15.10.5470 es_ES
dc.description.references Forment, J., Mulet, J. M., Vicente, O., & Serrano, R. (2002). The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1565(1), 36-40. doi:10.1016/s0005-2736(02)00503-5 es_ES
dc.description.references Gaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848 es_ES
dc.description.references Gadura, N., Robinson, L. C., & Michels, C. A. (2005). Glc7–Reg1 Phosphatase Signals to Yck1,2 Casein Kinase 1 to Regulate Transport Activity and Glucose-Induced Inactivation of Saccharomyces Maltose Permease. Genetics, 172(3), 1427-1439. doi:10.1534/genetics.105.051698 es_ES
dc.description.references GILBERT, W., SIEBEL, C. W., & GUTHRIE, C. (2001). Phosphorylation by Sky1p promotes Npl3p shuttling and mRNA dissociation. RNA, 7(2), 302-313. doi:10.1017/s1355838201002369 es_ES
dc.description.references Goossens, A., de la Fuente, N., Forment, J., Serrano, R., & Portillo, F. (2000). Regulation of Yeast H+-ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters. Molecular and Cellular Biology, 20(20), 7654-7661. doi:10.1128/mcb.20.20.7654-7661.2000 es_ES
dc.description.references Grossmann, G., Opekarova, M., Novakova, L., Stolz, J., & Tanner, W. (2006). Lipid Raft-Based Membrane Compartmentation of a Plant Transport Protein Expressed inSaccharomyces cerevisiae. Eukaryotic Cell, 5(6), 945-953. doi:10.1128/ec.00206-05 es_ES
dc.description.references Haro, R., & Rodrı́guez-Navarro, A. (2002). Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1564(1), 114-122. doi:10.1016/s0005-2736(02)00408-x es_ES
dc.description.references Hess, D. C., Lu, W., Rabinowitz, J. D., & Botstein, D. (2006). Ammonium Toxicity and Potassium Limitation in Yeast. PLoS Biology, 4(11), e351. doi:10.1371/journal.pbio.0040351 es_ES
dc.description.references Hillenmeyer, M. E., Fung, E., Wildenhain, J., Pierce, S. E., Hoon, S., Lee, W., … Giaever, G. (2008). The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes. Science, 320(5874), 362-365. doi:10.1126/science.1150021 es_ES
dc.description.references Ingvarsdottir, K., Krogan, N. J., Emre, N. C. T., Wyce, A., Thompson, N. J., Emili, A., … Berger, S. L. (2005). H2B Ubiquitin Protease Ubp8 and Sgf11 Constitute a Discrete Functional Module within the Saccharomyces cerevisiae SAGA Complex. Molecular and Cellular Biology, 25(3), 1162-1172. doi:10.1128/mcb.25.3.1162-1172.2005 es_ES
dc.description.references Ko, C. H., & Gaber, R. F. (1991). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology, 11(8), 4266-4273. doi:10.1128/mcb.11.8.4266 es_ES
dc.description.references Kuo, M. H., & Grayhack, E. (1994). A library of yeast genomic MCM1 binding sites contains genes involved in cell cycle control, cell wall and membrane structure, and metabolism. Molecular and Cellular Biology, 14(1), 348-359. doi:10.1128/mcb.14.1.348 es_ES
dc.description.references Madrid, R., Gómez, M. J., Ramos, J., & Rodrı́guez-Navarro, A. (1998). Ectopic Potassium Uptake intrk1 trk2Mutants ofSaccharomyces cerevisiaeCorrelates with a Highly Hyperpolarized Membrane Potential. Journal of Biological Chemistry, 273(24), 14838-14844. doi:10.1074/jbc.273.24.14838 es_ES
dc.description.references Maláč, J., Urbánková, E., Sigler, K., & Gášková, D. (2005). Activity of yeast multidrug resistance pumps during growth is controlled by carbon source and the composition of growth-depleted medium: DiS-C3(3) fluorescence assay. The International Journal of Biochemistry & Cell Biology, 37(12), 2536-2543. doi:10.1016/j.biocel.2005.06.005 es_ES
dc.description.references Malinsky, J., Opekarová, M., & Tanner, W. (2010). The lateral compartmentation of the yeast plasma membrane. Yeast, 27(8), 473-478. doi:10.1002/yea.1772 es_ES
dc.description.references Manlandro, C. M. A., Haydon, D. H., & Rosenwald, A. G. (2005). Ability of Sit4p To Promote K+Efflux via Nha1p Is Modulated by Sap155p and Sap185p. Eukaryotic Cell, 4(6), 1041-1049. doi:10.1128/ec.4.6.1041-1049.2005 es_ES
dc.description.references Maresova, L., Muend, S., Zhang, Y.-Q., Sychrova, H., & Rao, R. (2008). Membrane Hyperpolarization Drives Cation Influx and Fungicidal Activity of Amiodarone. Journal of Biological Chemistry, 284(5), 2795-2802. doi:10.1074/jbc.m806693200 es_ES
dc.description.references Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328 es_ES
dc.description.references Munson, A. M. (2004). Yeast ARL1 encodes a regulator of K+ influx. Journal of Cell Science, 117(11), 2309-2320. doi:10.1242/jcs.01050 es_ES
dc.description.references Perez-Valle, J., Jenkins, H., Merchan, S., Montiel, V., Ramos, J., Sharma, S., … Yenush, L. (2007). Key Role for Intracellular K+ and Protein Kinases Sat4/Hal4 and Hal5 in the Plasma Membrane Stabilization of Yeast Nutrient Transporters. Molecular and Cellular Biology, 27(16), 5725-5736. doi:10.1128/mcb.01375-06 es_ES
dc.description.references Porat, Z., Wender, N., Erez, O., & Kahana, C. (2005). Mechanism of polyamine tolerance in yeast: novel regulators and insights. Cellular and Molecular Life Sciences, 62(24), 3106-3116. doi:10.1007/s00018-005-5341-7 es_ES
dc.description.references Posas, F., Camps, M., & Ario, J. (1995). The PPZ Protein Phosphatases Are Important Determinants of Salt Tolerance in Yeast Cells. Journal of Biological Chemistry, 270(22), 13036-13041. doi:10.1074/jbc.270.22.13036 es_ES
dc.description.references Proszynski, T. J., Klemm, R. W., Gravert, M., Hsu, P. P., Gloor, Y., Wagner, J., … Walch-Solimena, C. (2005). A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proceedings of the National Academy of Sciences, 102(50), 17981-17986. doi:10.1073/pnas.0509107102 es_ES
dc.description.references Ramos, J., Alijo, R., Haro, R., & Rodriguez-Navarro, A. (1994). TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. Journal of Bacteriology, 176(1), 249-252. doi:10.1128/jb.176.1.249-252.1994 es_ES
dc.description.references Rao, R., Drummond-Barbosa, D., & Slayman, C. W. (1993). Transcriptional regulation by glucose of the yeastPMA1 gene encoding the plasma membrane H+-ATPase. Yeast, 9(10), 1075-1084. doi:10.1002/yea.320091006 es_ES
dc.description.references Rodrı́guez-Navarro, A. (2000). Potassium transport in fungi and plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1469(1), 1-30. doi:10.1016/s0304-4157(99)00013-1 es_ES
dc.description.references Ruiz, A., Yenush, L., & Ariño, J. (2003). Regulation ofENA1Na+-ATPase Gene Expression by the Ppz1 Protein Phosphatase Is Mediated by the Calcineurin Pathway. Eukaryotic Cell, 2(5), 937-948. doi:10.1128/ec.2.5.937-948.2003 es_ES
dc.description.references SERRANO, R. (1980). Effect of ATPase Inhibitors on the Proton Pump of Respiratory-Deficient Yeast. European Journal of Biochemistry, 105(2), 419-424. doi:10.1111/j.1432-1033.1980.tb04516.x es_ES
dc.description.references Serrano, R., Kielland-Brandt, M. C., & Fink, G. R. (1986). Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature, 319(6055), 689-693. doi:10.1038/319689a0 es_ES
dc.description.references Serrano, R., Ruiz, A., Bernal, D., Chambers, J. R., & Ariño, J. (2002). The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Molecular Microbiology, 46(5), 1319-1333. doi:10.1046/j.1365-2958.2002.03246.x es_ES
dc.description.references Venancio, T. M., Balaji, S., & Aravind, L. (2009). High-confidence mapping of chemical compounds and protein complexes reveals novel aspects of chemical stress response in yeast. Mol. BioSyst., 6(1), 175-181. doi:10.1039/b911821g es_ES
dc.description.references Wu, P.-Y. J., & Winston, F. (2002). Analysis of Spt7 Function in the Saccharomyces cerevisiae SAGA Coactivator Complex. Molecular and Cellular Biology, 22(15), 5367-5379. doi:10.1128/mcb.22.15.5367-5379.2002 es_ES
dc.description.references Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005 es_ES
dc.description.references Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem