- -

Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Rajabi, Fatemeh es_ES
dc.contributor.author Karimi, Nafiseh es_ES
dc.contributor.author Saidi, Mohammad Reza es_ES
dc.contributor.author Varma, Rajender S. es_ES
dc.contributor.author Luque, Rafael es_ES
dc.date.accessioned 2013-06-24T11:39:13Z
dc.date.issued 2012-06-05
dc.identifier.issn 1615-4150
dc.identifier.uri http://hdl.handle.net/10251/30020
dc.description.abstract Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as green oxidant. The supported catalyst could be easily recovered after completion of the reaction and reused several times without any loss in activity (no metal leaching observed during the reaction), constituting a facile and straightforward example of aqueous oxidation chemistry promoted by iron-based heterogeneous systems. es_ES
dc.description.sponsorship FR is grateful to Payame Noor University and Iran National Science Foundation (INSF) for support of this work. RL gratefully acknowledges support from Ministerio de Ciencia e Innovacion, Gobierno de Espana through a Ramon y Cajal contract (ref. RYC-2009-04199) and funding from MICINN (project CTQ-2011-28954-C02-02) and Consejeria de Ciencia e Innovacion, Junta de Andalucia (project P10-FQM-6711) as well as the concession of a short stay fellowship under Incentivos para Actividades de caracter cientifico y tecnico to RL (ref. IAC-2010-2-4512) at the EPA in Cincinnati. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Advanced Synthesis and Catalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Aqueous phase chemistry es_ES
dc.subject Alkene oxidation es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Supported iron oxide nanoparticles es_ES
dc.title Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/adsc.201100630
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC-2009-04199/ES/RYC-2009-04199/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-28954-C02-02/ES/TDISEÑO DE NANOMATERIALES CATALITICOS PARA LA PRODUCCION DE COMPUESTOS QUIMICOS DE ALTO VALOR AÑADIDO Y BIOCOMBUSTIBLES A PARTIR DE VALORIZACION DE BIOMASA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//P10-FQM-6711/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Primo Arnau, AM.; Rajabi, F.; Karimi, N.; Saidi, MR.; Varma, RS.; Luque, R. (2012). Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium. Advanced Synthesis and Catalysis. 354(9):1707-1711. https://doi.org/10.1002/adsc.201100630 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/adsc.201100630/pdf es_ES
dc.description.upvformatpinicio 1707 es_ES
dc.description.upvformatpfin 1711 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 354 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 229664
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder Iran National Science Foundation es_ES
dc.contributor.funder Payame Noor University es_ES
dc.description.references Okuhara, T. (2002). Water-Tolerant Solid Acid Catalysts. Chemical Reviews, 102(10), 3641-3666. doi:10.1021/cr0103569 es_ES
dc.description.references Polshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743. doi:10.1039/b921171c es_ES
dc.description.references Polshettiwar, V., & Varma, R. S. (2008). Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media. Accounts of Chemical Research, 41(5), 629-639. doi:10.1021/ar700238s es_ES
dc.description.references Serrano-Ruiz, J. C., Luque, R., & Sepúlveda-Escribano, A. (2011). Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chemical Society Reviews, 40(11), 5266. doi:10.1039/c1cs15131b es_ES
dc.description.references Weingarten, R., Tompsett, G. A., Conner, W. C., & Huber, G. W. (2011). Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Brønsted acid sites. Journal of Catalysis, 279(1), 174-182. doi:10.1016/j.jcat.2011.01.013 es_ES
dc.description.references Butler, R. N., & Coyne, A. G. (2010). Water: Nature’s Reaction Enforcer—Comparative Effects for Organic Synthesis «In-Water» and «On-Water». Chemical Reviews, 110(10), 6302-6337. doi:10.1021/cr100162c es_ES
dc.description.references Li, C.-J., & Chen, L. (2006). Organic chemistry in water. Chem. Soc. Rev., 35(1), 68-82. doi:10.1039/b507207g es_ES
dc.description.references Gonzalez-Arellano, C., Luque, R., & Macquarrie, D. J. (2009). Microwave efficient S-arylation of thiols with aryl iodides using supported metal nanoparticles. Chemical Communications, (11), 1410. doi:10.1039/b818767c es_ES
dc.description.references González-Arellano, C., Campelo, J. M., Macquarrie, D. J., Marinas, J. M., Romero, A. A., & Luque, R. (2008). Efficient Microwave Oxidation of Alcohols Using Low-Loaded Supported Metallic Iron Nanoparticles. ChemSusChem, 1(8-9), 746-750. doi:10.1002/cssc.200800113 es_ES
dc.description.references Pineda, A., Balu, A. M., Campelo, J. M., Romero, A. A., Carmona, D., Balas, F., … Luque, R. (2011). A Dry Milling Approach for the Synthesis of Highly Active Nanoparticles Supported on Porous Materials. ChemSusChem, 4(11), 1561-1565. doi:10.1002/cssc.201100265 es_ES
dc.description.references Rajabi, F., Naserian, S., Primo, A., & Luque, R. (2011). Efficient and Highly Selective Aqueous Oxidation of Sulfides to Sulfoxides at Room Temperature Catalysed by Supported Iron Oxide Nanoparticles on SBA-15. Advanced Synthesis & Catalysis, 353(11-12), 2060-2066. doi:10.1002/adsc.201100149 es_ES
dc.description.references Luque, R., Clark, J. H., Yoshida, K., & Gai, P. L. (2009). Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chemical Communications, (35), 5305. doi:10.1039/b911877b es_ES
dc.description.references Vargas, C., Mariana Balu, A., Manuel Campelo, J., Gonzalez-Arellano, C., Luque, R., & Angel Romero, A. (2010). Towards Greener and More Efficient C-C and C-Heteroatom Couplings: Present and Future. Current Organic Synthesis, 7(6), 568-586. doi:10.2174/157017910794328547 es_ES
dc.description.references Balu, A. M., Campelo, J. M., Luque, R., & Romero, A. A. (2010). One-step microwave-assisted asymmetric cyclisation/hydrogenation of citronellal to menthols using supported nanoparticles on mesoporous materials. Organic & Biomolecular Chemistry, 8(12), 2845. doi:10.1039/c003600e es_ES
dc.description.references Shipley, H. J., Engates, K. E., & Guettner, A. M. (2010). Study of iron oxide nanoparticles in soil for remediation of arsenic. Journal of Nanoparticle Research, 13(6), 2387-2397. doi:10.1007/s11051-010-9999-x es_ES
dc.description.references Tong, M., Yuan, S., Long, H., Zheng, M., Wang, L., & Chen, J. (2011). Reduction of nitrobenzene in groundwater by iron nanoparticles immobilized in PEG/nylon membrane. Journal of Contaminant Hydrology, 122(1-4), 16-25. doi:10.1016/j.jconhyd.2010.10.003 es_ES
dc.description.references Miguel-Sancho, N., Bomatí-Miguel, O., Colom, G., Salvador, J.-P., Marco, M.-P., & Santamaría, J. (2011). Development of Stable, Water-Dispersible, and Biofunctionalizable Superparamagnetic Iron Oxide Nanoparticles. Chemistry of Materials, 23(11), 2795-2802. doi:10.1021/cm1036452 es_ES
dc.description.references Hoare, T., Timko, B. P., Santamaria, J., Goya, G. F., Irusta, S., Lau, S., … Kohane, D. S. (2011). Magnetically Triggered Nanocomposite Membranes: A Versatile Platform for Triggered Drug Release. Nano Letters, 11(3), 1395-1400. doi:10.1021/nl200494t es_ES
dc.description.references Zeng, T., Chen, W.-W., Cirtiu, C. M., Moores, A., Song, G., & Li, C.-J. (2010). Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chemistry, 12(4), 570. doi:10.1039/b920000b es_ES
dc.description.references Sasidharan, M., & Bhaumik, A. (2010). Regioselective epoxidation of different types of double bonds over large-pore titanium silicate Ti-β. Journal of Molecular Catalysis A: Chemical, 328(1-2), 60-67. doi:10.1016/j.molcata.2010.05.024 es_ES
dc.description.references Guidotti, M., Pirovano, C., Ravasio, N., Lázaro, B., Fraile, J. M., Mayoral, J. A., … Galarneau, A. (2009). The use of H2O2 over titanium-grafted mesoporous silica catalysts: a step further towards sustainable epoxidation. Green Chemistry, 11(9), 1421. doi:10.1039/b903302e es_ES
dc.description.references Maiti, S. K., Malik, K. M. A., Gupta, S., Chakraborty, S., Ganguli, A. K., Mukherjee, A. K., & Bhattacharyya, R. (2006). Oxo- and Oxoperoxo-molybdenum(VI) Complexes with Aryl Hydroxamates:  Synthesis, Structure, and Catalytic Uses in Highly Efficient, Selective, and Ecologically Benign Peroxidic Epoxidation of Olefins. Inorganic Chemistry, 45(24), 9843-9857. doi:10.1021/ic0607235 es_ES
dc.description.references Nlate, S., Plault, L., & Astruc, D. (2006). Synthesis of 9- and 27-Armed Tetrakis(diperoxotungsto)phosphate-Cored Dendrimers and Their Use as Recoverable and Reusable Catalysts in the Oxidation of Alkenes, Sulfides, and Alcohols with Hydrogen Peroxide. Chemistry - A European Journal, 12(3), 903-914. doi:10.1002/chem.200500556 es_ES
dc.description.references Van Vliet, M. C. A., Mandelli, D., Arends, I. W. C. E., Schuchardt, U., & Sheldon, R. A. (2001). Alumina: a cheap, active and selective catalyst for epoxidations with (aqueous) hydrogen peroxide. Green Chemistry, 3(5), 243-246. doi:10.1039/b103952k es_ES
dc.description.references Wang, X., Lin, K. S. K., Chan, J. C. C., & Cheng, S. (2005). Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials. The Journal of Physical Chemistry B, 109(5), 1763-1769. doi:10.1021/jp045798d es_ES
dc.description.references Shi, F., Tse, M. K., Pohl, M.-M., Brückner, A., Zhang, S., & Beller, M. (2007). Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angewandte Chemie, 119(46), 9022-9024. doi:10.1002/ange.200703418 es_ES
dc.description.references Shi, F., Tse, M. K., Pohl, M.-M., Brückner, A., Zhang, S., & Beller, M. (2007). Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angewandte Chemie International Edition, 46(46), 8866-8868. doi:10.1002/anie.200703418 es_ES
dc.description.references Anand, N., Reddy, K. H. P., Swapna, V., Rao, K. S. R., & Burri, D. R. (2011). Fe(III) complex anchored SBA-15 is a new heterogeneous catalyst for the cleavage of aliphatic CC bond of styrene and its derivatives. Microporous and Mesoporous Materials, 143(1), 132-140. doi:10.1016/j.micromeso.2011.02.017 es_ES
dc.description.references Liu, B., Chen, Y., Yu, C.-Z., & Shen, Z.-W. (2010). Highly Chemical and Regio-selective Catalytic Oxidation with a Novel Manganese Catalyst. Chinese Journal of Chemistry, 21(7), 833-838. doi:10.1002/cjoc.20030210723 es_ES
dc.description.references Bhyrappa, P., Young, J. K., Moore, J. S., & Suslick, K. S. (1996). Shape selective epoxidation of alkenes by metalloporphyrin-dendrimers. Journal of Molecular Catalysis A: Chemical, 113(1-2), 109-116. doi:10.1016/s1381-1169(96)00161-6 es_ES
dc.description.references Deguillaume, L., Leriche, M., & Chaumerliac, N. (2005). Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere, 60(5), 718-724. doi:10.1016/j.chemosphere.2005.03.052 es_ES
dc.description.references Hulea, V., & Dumitriu, E. (2004). Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies. Applied Catalysis A: General, 277(1-2), 99-106. doi:10.1016/j.apcata.2004.09.001 es_ES
dc.description.references Wang, Y., Zhang, Q., Shishido, T., & Takehira, K. (2002). Characterizations of Iron-Containing MCM-41 and Its Catalytic Properties in Epoxidation of Styrene with Hydrogen Peroxide. Journal of Catalysis, 209(1), 186-196. doi:10.1006/jcat.2002.3607 es_ES
dc.description.references Maurya, M. R., Chandrakar, A. K., & Chand, S. (2007). Oxidation of phenol, styrene and methyl phenyl sulfide with H2O2 catalysed by dioxovanadium(V) and copper(II) complexes of 2-aminomethylbenzimidazole-based ligand encapsulated in zeolite-Y. Journal of Molecular Catalysis A: Chemical, 263(1-2), 227-237. doi:10.1016/j.molcata.2006.08.084 es_ES
dc.description.references Tanglumlert, W., Imae, T., White, T. J., & Wongkasemjit, S. (2009). Styrene oxidation with H2O2 over Fe- and Ti-SBA-1 mesoporous silica. Catalysis Communications, 10(7), 1070-1073. doi:10.1016/j.catcom.2009.01.002 es_ES
dc.description.references Yang, Y., Zhang, Y., Hao, S., Guan, J., Ding, H., Shang, F., … Kan, Q. (2010). Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Applied Catalysis A: General, 381(1-2), 274-281. doi:10.1016/j.apcata.2010.04.018 es_ES
dc.description.references Campelo, J. M., Conesa, T. D., Gracia, M. J., Jurado, M. J., Luque, R., Marinas, J. M., & Romero, A. A. (2008). Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles. Green Chemistry, 10(8), 853. doi:10.1039/b801754a es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem