Mostrar el registro sencillo del ítem
dc.contributor.author | Primo Arnau, Ana María | es_ES |
dc.contributor.author | Rajabi, Fatemeh | es_ES |
dc.contributor.author | Karimi, Nafiseh | es_ES |
dc.contributor.author | Saidi, Mohammad Reza | es_ES |
dc.contributor.author | Varma, Rajender S. | es_ES |
dc.contributor.author | Luque, Rafael | es_ES |
dc.date.accessioned | 2013-06-24T11:39:13Z | |
dc.date.issued | 2012-06-05 | |
dc.identifier.issn | 1615-4150 | |
dc.identifier.uri | http://hdl.handle.net/10251/30020 | |
dc.description.abstract | Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as green oxidant. The supported catalyst could be easily recovered after completion of the reaction and reused several times without any loss in activity (no metal leaching observed during the reaction), constituting a facile and straightforward example of aqueous oxidation chemistry promoted by iron-based heterogeneous systems. | es_ES |
dc.description.sponsorship | FR is grateful to Payame Noor University and Iran National Science Foundation (INSF) for support of this work. RL gratefully acknowledges support from Ministerio de Ciencia e Innovacion, Gobierno de Espana through a Ramon y Cajal contract (ref. RYC-2009-04199) and funding from MICINN (project CTQ-2011-28954-C02-02) and Consejeria de Ciencia e Innovacion, Junta de Andalucia (project P10-FQM-6711) as well as the concession of a short stay fellowship under Incentivos para Actividades de caracter cientifico y tecnico to RL (ref. IAC-2010-2-4512) at the EPA in Cincinnati. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Advanced Synthesis and Catalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aqueous phase chemistry | es_ES |
dc.subject | Alkene oxidation | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | Supported iron oxide nanoparticles | es_ES |
dc.title | Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/adsc.201100630 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RYC-2009-04199/ES/RYC-2009-04199/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2011-28954-C02-02/ES/TDISEÑO DE NANOMATERIALES CATALITICOS PARA LA PRODUCCION DE COMPUESTOS QUIMICOS DE ALTO VALOR AÑADIDO Y BIOCOMBUSTIBLES A PARTIR DE VALORIZACION DE BIOMASA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//P10-FQM-6711/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Primo Arnau, AM.; Rajabi, F.; Karimi, N.; Saidi, MR.; Varma, RS.; Luque, R. (2012). Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium. Advanced Synthesis and Catalysis. 354(9):1707-1711. https://doi.org/10.1002/adsc.201100630 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/adsc.201100630/pdf | es_ES |
dc.description.upvformatpinicio | 1707 | es_ES |
dc.description.upvformatpfin | 1711 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 354 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 229664 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.contributor.funder | Iran National Science Foundation | es_ES |
dc.contributor.funder | Payame Noor University | es_ES |
dc.description.references | Okuhara, T. (2002). Water-Tolerant Solid Acid Catalysts. Chemical Reviews, 102(10), 3641-3666. doi:10.1021/cr0103569 | es_ES |
dc.description.references | Polshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743. doi:10.1039/b921171c | es_ES |
dc.description.references | Polshettiwar, V., & Varma, R. S. (2008). Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media. Accounts of Chemical Research, 41(5), 629-639. doi:10.1021/ar700238s | es_ES |
dc.description.references | Serrano-Ruiz, J. C., Luque, R., & Sepúlveda-Escribano, A. (2011). Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chemical Society Reviews, 40(11), 5266. doi:10.1039/c1cs15131b | es_ES |
dc.description.references | Weingarten, R., Tompsett, G. A., Conner, W. C., & Huber, G. W. (2011). Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Brønsted acid sites. Journal of Catalysis, 279(1), 174-182. doi:10.1016/j.jcat.2011.01.013 | es_ES |
dc.description.references | Butler, R. N., & Coyne, A. G. (2010). Water: Nature’s Reaction Enforcer—Comparative Effects for Organic Synthesis «In-Water» and «On-Water». Chemical Reviews, 110(10), 6302-6337. doi:10.1021/cr100162c | es_ES |
dc.description.references | Li, C.-J., & Chen, L. (2006). Organic chemistry in water. Chem. Soc. Rev., 35(1), 68-82. doi:10.1039/b507207g | es_ES |
dc.description.references | Gonzalez-Arellano, C., Luque, R., & Macquarrie, D. J. (2009). Microwave efficient S-arylation of thiols with aryl iodides using supported metal nanoparticles. Chemical Communications, (11), 1410. doi:10.1039/b818767c | es_ES |
dc.description.references | González-Arellano, C., Campelo, J. M., Macquarrie, D. J., Marinas, J. M., Romero, A. A., & Luque, R. (2008). Efficient Microwave Oxidation of Alcohols Using Low-Loaded Supported Metallic Iron Nanoparticles. ChemSusChem, 1(8-9), 746-750. doi:10.1002/cssc.200800113 | es_ES |
dc.description.references | Pineda, A., Balu, A. M., Campelo, J. M., Romero, A. A., Carmona, D., Balas, F., … Luque, R. (2011). A Dry Milling Approach for the Synthesis of Highly Active Nanoparticles Supported on Porous Materials. ChemSusChem, 4(11), 1561-1565. doi:10.1002/cssc.201100265 | es_ES |
dc.description.references | Rajabi, F., Naserian, S., Primo, A., & Luque, R. (2011). Efficient and Highly Selective Aqueous Oxidation of Sulfides to Sulfoxides at Room Temperature Catalysed by Supported Iron Oxide Nanoparticles on SBA-15. Advanced Synthesis & Catalysis, 353(11-12), 2060-2066. doi:10.1002/adsc.201100149 | es_ES |
dc.description.references | Luque, R., Clark, J. H., Yoshida, K., & Gai, P. L. (2009). Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chemical Communications, (35), 5305. doi:10.1039/b911877b | es_ES |
dc.description.references | Vargas, C., Mariana Balu, A., Manuel Campelo, J., Gonzalez-Arellano, C., Luque, R., & Angel Romero, A. (2010). Towards Greener and More Efficient C-C and C-Heteroatom Couplings: Present and Future. Current Organic Synthesis, 7(6), 568-586. doi:10.2174/157017910794328547 | es_ES |
dc.description.references | Balu, A. M., Campelo, J. M., Luque, R., & Romero, A. A. (2010). One-step microwave-assisted asymmetric cyclisation/hydrogenation of citronellal to menthols using supported nanoparticles on mesoporous materials. Organic & Biomolecular Chemistry, 8(12), 2845. doi:10.1039/c003600e | es_ES |
dc.description.references | Shipley, H. J., Engates, K. E., & Guettner, A. M. (2010). Study of iron oxide nanoparticles in soil for remediation of arsenic. Journal of Nanoparticle Research, 13(6), 2387-2397. doi:10.1007/s11051-010-9999-x | es_ES |
dc.description.references | Tong, M., Yuan, S., Long, H., Zheng, M., Wang, L., & Chen, J. (2011). Reduction of nitrobenzene in groundwater by iron nanoparticles immobilized in PEG/nylon membrane. Journal of Contaminant Hydrology, 122(1-4), 16-25. doi:10.1016/j.jconhyd.2010.10.003 | es_ES |
dc.description.references | Miguel-Sancho, N., Bomatí-Miguel, O., Colom, G., Salvador, J.-P., Marco, M.-P., & Santamaría, J. (2011). Development of Stable, Water-Dispersible, and Biofunctionalizable Superparamagnetic Iron Oxide Nanoparticles. Chemistry of Materials, 23(11), 2795-2802. doi:10.1021/cm1036452 | es_ES |
dc.description.references | Hoare, T., Timko, B. P., Santamaria, J., Goya, G. F., Irusta, S., Lau, S., … Kohane, D. S. (2011). Magnetically Triggered Nanocomposite Membranes: A Versatile Platform for Triggered Drug Release. Nano Letters, 11(3), 1395-1400. doi:10.1021/nl200494t | es_ES |
dc.description.references | Zeng, T., Chen, W.-W., Cirtiu, C. M., Moores, A., Song, G., & Li, C.-J. (2010). Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chemistry, 12(4), 570. doi:10.1039/b920000b | es_ES |
dc.description.references | Sasidharan, M., & Bhaumik, A. (2010). Regioselective epoxidation of different types of double bonds over large-pore titanium silicate Ti-β. Journal of Molecular Catalysis A: Chemical, 328(1-2), 60-67. doi:10.1016/j.molcata.2010.05.024 | es_ES |
dc.description.references | Guidotti, M., Pirovano, C., Ravasio, N., Lázaro, B., Fraile, J. M., Mayoral, J. A., … Galarneau, A. (2009). The use of H2O2 over titanium-grafted mesoporous silica catalysts: a step further towards sustainable epoxidation. Green Chemistry, 11(9), 1421. doi:10.1039/b903302e | es_ES |
dc.description.references | Maiti, S. K., Malik, K. M. A., Gupta, S., Chakraborty, S., Ganguli, A. K., Mukherjee, A. K., & Bhattacharyya, R. (2006). Oxo- and Oxoperoxo-molybdenum(VI) Complexes with Aryl Hydroxamates: Synthesis, Structure, and Catalytic Uses in Highly Efficient, Selective, and Ecologically Benign Peroxidic Epoxidation of Olefins. Inorganic Chemistry, 45(24), 9843-9857. doi:10.1021/ic0607235 | es_ES |
dc.description.references | Nlate, S., Plault, L., & Astruc, D. (2006). Synthesis of 9- and 27-Armed Tetrakis(diperoxotungsto)phosphate-Cored Dendrimers and Their Use as Recoverable and Reusable Catalysts in the Oxidation of Alkenes, Sulfides, and Alcohols with Hydrogen Peroxide. Chemistry - A European Journal, 12(3), 903-914. doi:10.1002/chem.200500556 | es_ES |
dc.description.references | Van Vliet, M. C. A., Mandelli, D., Arends, I. W. C. E., Schuchardt, U., & Sheldon, R. A. (2001). Alumina: a cheap, active and selective catalyst for epoxidations with (aqueous) hydrogen peroxide. Green Chemistry, 3(5), 243-246. doi:10.1039/b103952k | es_ES |
dc.description.references | Wang, X., Lin, K. S. K., Chan, J. C. C., & Cheng, S. (2005). Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials. The Journal of Physical Chemistry B, 109(5), 1763-1769. doi:10.1021/jp045798d | es_ES |
dc.description.references | Shi, F., Tse, M. K., Pohl, M.-M., Brückner, A., Zhang, S., & Beller, M. (2007). Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angewandte Chemie, 119(46), 9022-9024. doi:10.1002/ange.200703418 | es_ES |
dc.description.references | Shi, F., Tse, M. K., Pohl, M.-M., Brückner, A., Zhang, S., & Beller, M. (2007). Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angewandte Chemie International Edition, 46(46), 8866-8868. doi:10.1002/anie.200703418 | es_ES |
dc.description.references | Anand, N., Reddy, K. H. P., Swapna, V., Rao, K. S. R., & Burri, D. R. (2011). Fe(III) complex anchored SBA-15 is a new heterogeneous catalyst for the cleavage of aliphatic CC bond of styrene and its derivatives. Microporous and Mesoporous Materials, 143(1), 132-140. doi:10.1016/j.micromeso.2011.02.017 | es_ES |
dc.description.references | Liu, B., Chen, Y., Yu, C.-Z., & Shen, Z.-W. (2010). Highly Chemical and Regio-selective Catalytic Oxidation with a Novel Manganese Catalyst. Chinese Journal of Chemistry, 21(7), 833-838. doi:10.1002/cjoc.20030210723 | es_ES |
dc.description.references | Bhyrappa, P., Young, J. K., Moore, J. S., & Suslick, K. S. (1996). Shape selective epoxidation of alkenes by metalloporphyrin-dendrimers. Journal of Molecular Catalysis A: Chemical, 113(1-2), 109-116. doi:10.1016/s1381-1169(96)00161-6 | es_ES |
dc.description.references | Deguillaume, L., Leriche, M., & Chaumerliac, N. (2005). Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere, 60(5), 718-724. doi:10.1016/j.chemosphere.2005.03.052 | es_ES |
dc.description.references | Hulea, V., & Dumitriu, E. (2004). Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies. Applied Catalysis A: General, 277(1-2), 99-106. doi:10.1016/j.apcata.2004.09.001 | es_ES |
dc.description.references | Wang, Y., Zhang, Q., Shishido, T., & Takehira, K. (2002). Characterizations of Iron-Containing MCM-41 and Its Catalytic Properties in Epoxidation of Styrene with Hydrogen Peroxide. Journal of Catalysis, 209(1), 186-196. doi:10.1006/jcat.2002.3607 | es_ES |
dc.description.references | Maurya, M. R., Chandrakar, A. K., & Chand, S. (2007). Oxidation of phenol, styrene and methyl phenyl sulfide with H2O2 catalysed by dioxovanadium(V) and copper(II) complexes of 2-aminomethylbenzimidazole-based ligand encapsulated in zeolite-Y. Journal of Molecular Catalysis A: Chemical, 263(1-2), 227-237. doi:10.1016/j.molcata.2006.08.084 | es_ES |
dc.description.references | Tanglumlert, W., Imae, T., White, T. J., & Wongkasemjit, S. (2009). Styrene oxidation with H2O2 over Fe- and Ti-SBA-1 mesoporous silica. Catalysis Communications, 10(7), 1070-1073. doi:10.1016/j.catcom.2009.01.002 | es_ES |
dc.description.references | Yang, Y., Zhang, Y., Hao, S., Guan, J., Ding, H., Shang, F., … Kan, Q. (2010). Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Applied Catalysis A: General, 381(1-2), 274-281. doi:10.1016/j.apcata.2010.04.018 | es_ES |
dc.description.references | Campelo, J. M., Conesa, T. D., Gracia, M. J., Jurado, M. J., Luque, R., Marinas, J. M., & Romero, A. A. (2008). Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles. Green Chemistry, 10(8), 853. doi:10.1039/b801754a | es_ES |