- -

Iron-Catalysed Markovnikov Hydrothiolation of Styrenes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Iron-Catalysed Markovnikov Hydrothiolation of Styrenes

Mostrar el registro completo del ítem

Cabrero Antonino, JR.; Leyva Perez, A.; Corma Canós, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis and Catalysis. 354:678-687. doi:10.1002/adsc.201100731

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/30028

Ficheros en el ítem

Metadatos del ítem

Título: Iron-Catalysed Markovnikov Hydrothiolation of Styrenes
Autor: Cabrero Antonino, Jose Ramón Leyva Perez, Antonio Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
The bis(triflimide)iron(III) salt catalyzes the hydrothiolation of styrenes in a Markovnikov fashion with good selectivities and high yields. After isolation, different benzylic thioethers are obtained. This iron(III) ...[+]
Palabras clave: Benzylic thioethers , Bis(triflimide)- iron(III) , Hydrothiolation , Iron catalysis , Markovnikov addition , Styrenes
Derechos de uso: Cerrado
Fuente:
Advanced Synthesis and Catalysis. (issn: 1615-4150 )
DOI: 10.1002/adsc.201100731
Editorial:
Wiley-VCH Verlag
Versión del editor: http://onlinelibrary.wiley.com/doi/10.1002/adsc.201100731/pdf
Agradecimientos:
The work have been supported by Consolider-Ingenio 2010 (proyecto MULTICAT), and PROMETEO from Generalitat Valenciana. J.R.C.-A. thanks MCIINN for the provision of a doctoral grant. A.L.-P. thanks ITQ for financial support. ...[+]
Tipo: Artículo

References

DAEMMRICH, A. A., & BOWDEN, M. E. (2005). PHARMA SINCE 1870. Chemical & Engineering News Archive, 83(25), 28-42. doi:10.1021/cen-v083n025.p028

Page, P. C. B. (Ed.). (1999). Organosulfur Chemistry II. Topics in Current Chemistry. doi:10.1007/3-540-48986-x

Gruber, A. S., Zim, D., Ebeling, G., Monteiro, A. L., & Dupont, J. (2000). Sulfur-Containing Palladacycles as Catalyst Precursors for the Heck Reaction. Organic Letters, 2(9), 1287-1290. doi:10.1021/ol0057277 [+]
DAEMMRICH, A. A., & BOWDEN, M. E. (2005). PHARMA SINCE 1870. Chemical & Engineering News Archive, 83(25), 28-42. doi:10.1021/cen-v083n025.p028

Page, P. C. B. (Ed.). (1999). Organosulfur Chemistry II. Topics in Current Chemistry. doi:10.1007/3-540-48986-x

Gruber, A. S., Zim, D., Ebeling, G., Monteiro, A. L., & Dupont, J. (2000). Sulfur-Containing Palladacycles as Catalyst Precursors for the Heck Reaction. Organic Letters, 2(9), 1287-1290. doi:10.1021/ol0057277

Perchonock, C. D., McCarthy, M. E., Erhard, K. F., Gleason, J. G., Wasserman, M. A., Muccitelli, R. M., … Vickery, L. M. (1985). Synthesis and pharmacological characterization of 5-(2-dodecylphenyl)-4,6-dithianonanedioic acid and 5-[2-(8-phenyloctyl)phenyl]-4,6-dithianonanedioic acid: prototypes of a novel class of leukotriene antagonists. Journal of Medicinal Chemistry, 28(9), 1145-1147. doi:10.1021/jm00147a004

Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u

Griesbaum, K. (1970). Probleme und Möglichkeiten der radikalischen Addition von Thiolen an ungesättigte Verbindungen. Angewandte Chemie, 82(7), 276-290. doi:10.1002/ange.19700820703

Griesbaum, K. (1970). Problems and Possibilities of the Free-Radical Addition of Thiols to Unsaturated Compounds. Angewandte Chemie International Edition in English, 9(4), 273-287. doi:10.1002/anie.197002731

Screttas, C. G., & Micha-Screttas, M. (1978). Hydrolithiation of .alpha.-olefins by a regiospecific two-step process. Transformation of alkyl phenyl sulfides to alkyllithium reagents. The Journal of Organic Chemistry, 43(6), 1064-1071. doi:10.1021/jo00400a008

Bakuzis, P., Bakuzis, M. L. F., Fortes, C. C., & Santos, R. (1976). The sulfide group as an aldehyde precursor. The Journal of Organic Chemistry, 41(16), 2769-2770. doi:10.1021/jo00878a027

Water promoted catalyst-free anti-Markovnikov addition of thiols to styrenes. (2008). Arkivoc, 2008(15), 47. doi:10.3998/ark.5550190.0009.f06

Nguyen, V.-H., Nishino, H., Kajikawa, S., & Kurosawa, K. (1998). Mn(III)-based reactions of alkenes and alkynes with thiols. An approach toward substituted 2,3-dihydro-1,4-oxathiins and simple route to (E)-vinyl sulfides. Tetrahedron, 54(38), 11445-11460. doi:10.1016/s0040-4020(98)00707-8

Kumar, P., Pandey, R. K., & Hegde, V. R. (1999). Anti-Markovnikov Addition of Thiols Across Double Bonds Catalyzed by H-Rho-Zeolite. Synlett, 1999(12), 1921-1922. doi:10.1055/s-1999-2976

Gao, S., Tzeng, T., Sastry, M. N. V., Chu, C.-M., Liu, J.-T., Lin, C., & Yao, C.-F. (2006). Iodine catalyzed conjugate addition of mercaptans to α,β-unsaturated carboxylic acids under solvent-free condition. Tetrahedron Letters, 47(12), 1889-1893. doi:10.1016/j.tetlet.2006.01.080

Busqué, F., de March, P., Figueredo, M., Font, J., & González, L. (2004). A Study of the Conjugate Addition of Thionucleophiles to 2(5H)-Furanones. European Journal of Organic Chemistry, 2004(7), 1492-1499. doi:10.1002/ejoc.200300693

McDaid, P., Chen, Y., & Deng, L. (2002). A Highly Enantioselective and General Conjugate Addition of Thiols to Cyclic Enones with an Organic Catalyst. Angewandte Chemie, 114(2), 348-350. doi:10.1002/1521-3757(20020118)114:2<348::aid-ange348>3.0.co;2-6

McDaid, P., Chen, Y., & Deng, L. (2002). A Highly Enantioselective and General Conjugate Addition of Thiols to Cyclic Enones with an Organic Catalyst This work was financially supported by National Institutes of Health (GM-61591), Research Corporation (RI-0311), and the Harcourt General Charitable Foundation. Angewandte Chemie International Edition, 41(2), 338. doi:10.1002/1521-3773(20020118)41:2<338::aid-anie338>3.0.co;2-m

Bandini, M., Cozzi, P. G., Giacomini, M., Melchiorre, P., Selva, S., & Umani-Ronchi, A. (2002). Sequential One-Pot InBr3-Catalyzed 1,4- then 1,2-Nucleophilic Addition to Enones. The Journal of Organic Chemistry, 67(11), 3700-3704. doi:10.1021/jo0163243

Nishimura, K., & Tomioka, K. (2002). Chiral Amino Ether-Controlled Catalytic Enantioselective Arylthiol Conjugate Additions to α,β-Unsaturated Esters and Ketones:  Scope, Structural Requirements, and Mechanistic Implications. The Journal of Organic Chemistry, 67(2), 431-434. doi:10.1021/jo015879v

Kanemasa, S., Oderaotoshi, Y., & Wada, E. (1999). Asymmetric Conjugate Addition of Thiols to a 3-(2-Alkenoyl)-2-oxazolidinone Catalyzed by the DBFOX/Ph Aqua Complex of Nickel(II) Perchlorate. Journal of the American Chemical Society, 121(37), 8675-8676. doi:10.1021/ja991064g

Emori, E., Arai, T., Sasai, H., & Shibasaki, M. (1998). A Catalytic Michael Addition of Thiols to α,β-Unsaturated Carbonyl Compounds:  Asymmetric Michael Additions and Asymmetric Protonations. Journal of the American Chemical Society, 120(16), 4043-4044. doi:10.1021/ja980397v

Miyata, O., Shinada, T., Ninomiya, I., Naito, T., Date, T., Okamura, K., & Inagaki, S. (1991). Stereospecific nucleophilic addition reactions to olefins. Addition of thiols to .alpha.,.beta.-unsaturated carboxylic acid derivatives. The Journal of Organic Chemistry, 56(23), 6556-6564. doi:10.1021/jo00023a021

KUWAJIMA, I., MUROFUSHI, T., & NAKAMURA, E. (1976). Quaternary Ammonium Fluoride-Catalyzed Conjugate Addition of Thiols to C=C Double Bonds. Synthesis, 1976(09), 602-604. doi:10.1055/s-1976-24133

Corma, A., González-Arellano, C., Iglesias, M., & Sánchez, F. (2010). Efficient synthesis of vinyl and alkyl sulfides via hydrothiolation of alkynes and electron-deficient olefins using soluble and heterogenized gold complexes catalysts. Applied Catalysis A: General, 375(1), 49-54. doi:10.1016/j.apcata.2009.12.016

Delp, S. A., Munro-Leighton, C., Goj, L. A., Ramírez, M. A., Gunnoe, T. B., Petersen, J. L., & Boyle, P. D. (2007). Addition of S−H Bonds across Electron-Deficient Olefins Catalyzed by Well-Defined Copper(I) Thiolate Complexes. Inorganic Chemistry, 46(7), 2365-2367. doi:10.1021/ic070268s

Posner, T. (1907). Beiträge zur Kenntnis der ungesättigten Verbindungen. — V. Über die Addition von Mercaptanen an ungesättigte Säuren. Berichte der deutschen chemischen Gesellschaft, 40(4), 4788-4794. doi:10.1002/cber.190704004134

Ipatieff, V. N., Pines, H., & Friedman, B. S. (1938). Reaction of Aliphatic Olefins with Thiophenol1. Journal of the American Chemical Society, 60(11), 2731-2734. doi:10.1021/ja01278a055

Screttas, C. G., & Micha-Screttas, M. (1979). Markownikoff two-step hydrolithiation of .alpha.-olefins. Transformation of secondary and tertiary alkyl phenyl sulfides to the relevant alkyllithium reagents. The Journal of Organic Chemistry, 44(5), 713-719. doi:10.1021/jo01319a011

Mukaiyama, T., Izawa, T., Saigo, K., & Takei, H. (1973). ADDITION REACTION OF THIOL TO OLEFIN BY THE USE OF TiCl4. Chemistry Letters, 2(4), 355-356. doi:10.1246/cl.1973.355

Belley, M., & Zamboni, R. (1989). Addition of thiols to styrenes: formation of benzylic thioethers. The Journal of Organic Chemistry, 54(5), 1230-1232. doi:10.1021/jo00266a053

Weïwer, M., Coulombel, L., & Duñach, E. (2006). Regioselective indium(iii) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chem. Commun., (3), 332-334. doi:10.1039/b513946e

Kano, K., Takeuchi, M., Hashimoto, S., & Yoshidat, Z. (1990). Hemin-Catalyzed Addition Reactions of Thiophenols to Styrene. Chemistry Letters, 19(8), 1381-1384. doi:10.1246/cl.1990.1381

Takeuchi, M., Shimakoshi, H., & Kano, K. (1994). (Porphinato)iron-Catalyzed Addition Reactions of Thiols to Alkenes via (.sigma.-Alkyl)iron(II) Complexes. Organometallics, 13(4), 1208-1213. doi:10.1021/om00016a025

Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42(23), 3791-3794. doi:10.1016/s0040-4039(01)00570-6

Menggenbateer, Narsireddy, M., Ferrara, G., Nishina, N., Jin, T., & Yamamoto, Y. (2010). Gold-catalyzed regiospecific intermolecular hydrothiolation of allenes. Tetrahedron Letters, 51(35), 4627-4629. doi:10.1016/j.tetlet.2010.06.125

Yang, J., Sabarre, A., Fraser, L. R., Patrick, B. O., & Love, J. A. (2009). Synthesis of 1,1-Disubstituted Alkyl Vinyl Sulfides via Rhodium-Catalyzed Alkyne Hydrothiolation: Scope and Limitations. The Journal of Organic Chemistry, 74(1), 182-187. doi:10.1021/jo801644s

Enthaler, S., Junge, K., & Beller, M. (2008). Eisenkatalyse – ein nachhaltiges Prinzip mit Perspektive? Angewandte Chemie, 120(18), 3363-3367. doi:10.1002/ange.200800012

Enthaler, S., Junge, K., & Beller, M. (2008). Sustainable Metal Catalysis with Iron: From Rust to a Rising Star? Angewandte Chemie International Edition, 47(18), 3317-3321. doi:10.1002/anie.200800012

Junge, K., Schröder, K., & Beller, M. (2011). Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chemical Communications, 47(17), 4849. doi:10.1039/c0cc05733a

Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-Catalyzed Reactions in Organic Synthesis. Chemical Reviews, 104(12), 6217-6254. doi:10.1021/cr040664h

Kischel, J., Jovel, I., Mertins, K., Zapf, A., & Beller, M. (2006). A Convenient FeCl3-Catalyzed Hydroarylation of Styrenes. Organic Letters, 8(1), 19-22. doi:10.1021/ol0523143

Moreau, B., Wu, J. Y., & Ritter, T. (2009). Iron-Catalyzed 1,4-Addition of α-Olefins to Dienes. Organic Letters, 11(2), 337-339. doi:10.1021/ol802524r

Michaux, J., Terrasson, V., Marque, S., Wehbe, J., Prim, D., & Campagne, J.-M. (2007). Intermolecular FeCl3-Catalyzed Hydroamination of Styrenes. European Journal of Organic Chemistry, 2007(16), 2601-2603. doi:10.1002/ejoc.200700023

Schröder, K., Enthaler, S., Join, B., Junge, K., & Beller, M. (2010). Iron-Catalyzed Epoxidation of Aromatic Olefins and 1,3-Dienes. Advanced Synthesis & Catalysis, 352(10), 1771-1778. doi:10.1002/adsc.201000091

Kischel, J., Michalik, D., Zapf, A., & Beller, M. (2007). FeCl3-Catalyzed Addition of 1,3-Dicarbonyl Compounds to Aromatic Olefins. Chemistry – An Asian Journal, 2(7), 909-914. doi:10.1002/asia.200700055

Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2010). Iron-Catalysed Regio- and Stereoselective Head-to-Tail Dimerisation of Styrenes. Advanced Synthesis & Catalysis, 352(10), 1571-1576. doi:10.1002/adsc.201000096

Hashimoto, T., Kutubi, S., Izumi, T., Rahman, A., & Kitamura, T. (2011). Catalytic hydroarylation of alkynes with arenes in the presence of FeCl3 and AgOTf. Journal of Organometallic Chemistry, 696(1), 99-105. doi:10.1016/j.jorganchem.2010.08.009

Driller, K. M., Klein, H., Jackstell, R., & Beller, M. (2009). Eisen-katalysierte Carbonylierungen: selektive und effiziente Synthese von Succinimiden. Angewandte Chemie, 121(33), 6157-6160. doi:10.1002/ange.200902078

Driller, K. M., Klein, H., Jackstell, R., & Beller, M. (2009). Iron-Catalyzed Carbonylation: Selective and Efficient Synthesis of Succinimides. Angewandte Chemie International Edition, 48(33), 6041-6044. doi:10.1002/anie.200902078

Driller, K. M., Prateeptongkum, S., Jackstell, R., & Beller, M. (2010). Eine allgemeine und selektive Eisen-katalysierte Aminocarbonylierung von Alkinen: Synthese von Acryl- und Zimtsäureamiden. Angewandte Chemie, 123(2), 558-562. doi:10.1002/ange.201005823

Driller, K. M., Prateeptongkum, S., Jackstell, R., & Beller, M. (2010). A General and Selective Iron-Catalyzed Aminocarbonylation of Alkynes: Synthesis of Acryl- and Cinnamides. Angewandte Chemie International Edition, 50(2), 537-541. doi:10.1002/anie.201005823

Bera, K., Sarkar, S., Biswas, S., Maiti, S., & Jana, U. (2011). Iron-Catalyzed Synthesis of Functionalized 2H-Chromenes via Intramolecular Alkyne−Carbonyl Metathesis. The Journal of Organic Chemistry, 76(9), 3539-3544. doi:10.1021/jo2000012

Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616

Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616

Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie, 121(31), 5694-5695. doi:10.1002/ange.200902237

Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie International Edition, 48(31), 5586-5587. doi:10.1002/anie.200902237

Bedford, R. B., Nakamura, M., Gower, N. J., Haddow, M. F., Hall, M. A., Huwe, M., … Okopie, R. A. (2009). Iron-catalysed Suzuki coupling? A cautionary tale. Tetrahedron Letters, 50(45), 6110-6111. doi:10.1016/j.tetlet.2009.08.022

Vargas, C., Mariana Balu, A., Manuel Campelo, J., Gonzalez-Arellano, C., Luque, R., & Angel Romero, A. (2010). Towards Greener and More Efficient C-C and C-Heteroatom Couplings: Present and Future. Current Organic Synthesis, 7(6), 568-586. doi:10.2174/157017910794328547

Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metalltriflimidate sind bessere Katalysatoren für die organische Synthese als Metalltriflate - der Effekt eines stark delokalisierten Gegenions. Angewandte Chemie, 122(43), 8032-8060. doi:10.1002/ange.200906407

Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407

Leyva, A., & Corma, A. (2009). Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. The Journal of Organic Chemistry, 74(5), 2067-2074. doi:10.1021/jo802558e

Coulombel, L., Grau, F., Weïwer, M., Favier, I., Chaminade, X., Heumann, A., … Duñach, E. (2008). LewisSuper‐Acid Catalyzed Cyclizations: A New Route to Fragrance Compounds. Chemistry & Biodiversity, 5(6), 1070-1082. doi:10.1002/cbdv.200890086

Kohno, K., Nakagawa, K., Yahagi, T., Choi, J.-C., Yasuda, H., & Sakakura, T. (2009). Fe(OTf)3-Catalyzed Addition of sp C−H Bonds to Olefins. Journal of the American Chemical Society, 131(8), 2784-2785. doi:10.1021/ja8090593

Baleizão, C., & Berberan-Santos, M. N. (2009). How Fast is a Fast Equilibrium? A New View of Reversible Reactions. ChemPhysChem, 10(1), 199-205. doi:10.1002/cphc.200800350

Hamilton, G. L., Kang, E. J., Mba, M., & Toste, F. D. (2007). A Powerful Chiral Counterion Strategy for Asymmetric Transition Metal Catalysis. Science, 317(5837), 496-499. doi:10.1126/science.1145229

Ratjen, L., García-García, P., Lay, F., Beck, M. E., & List, B. (2010). Disulfonimid-katalysierte asymmetrische vinyloge und bisvinyloge Mukaiyama-Aldolreaktionen. Angewandte Chemie, 123(3), 780-784. doi:10.1002/ange.201005954

Ratjen, L., García-García, P., Lay, F., Beck, M. E., & List, B. (2010). Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions. Angewandte Chemie International Edition, 50(3), 754-758. doi:10.1002/anie.201005954

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem