- -

Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image

Mostrar el registro completo del ítem

Martínez Martínez, F.; Lago Ángel, MÁ.; Rupérez Moreno, MJ.; Monserrat Aranda, C. (2012). Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image. Computer Methods in Biomechanics and Biomedical Engineering. 1-11. https://doi.org/10.1080/10255842.2011.637492

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/30452

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image
Autor: Martínez Martínez, Francisco Lago Ángel, Miguel Ángel Rupérez Moreno, María José Monserrat Aranda, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Fecha difusión:
Resumen:
In this study, six biomechanical models for simulating lamb liver behaviour are presented. They are validated using similarity coefficients from Medical Image on reconstructed volumes from computerised tomography images. ...[+]
Palabras clave: Lamb liver , Finite elements , Biomechanical models , Jaccard , Hausdorff
Derechos de uso: Cerrado
Fuente:
Computer Methods in Biomechanics and Biomedical Engineering. (issn: 1025-5842 )
DOI: 10.1080/10255842.2011.637492
Editorial:
Taylor & Francis
Versión del editor: http://www.tandfonline.com/doi/pdf/10.1080/10255842.2011.637492
Código del Proyecto:
info:eu-repo/grantAgreement/MITURCO//TSI-020100-2009-0189/ES/SISTEMA DE NAVEGACIÓN MEDIANTE REALIDAD VIRTUAL EN CIRUGÍA LAPAROSCOPICA/
info:eu-repo/grantAgreement/MICINN//IDI-20101153/ES/TERAPIAS ASISTIVAS COLABORATIVAS PARA EL TRATAMIENTO ONCOLÓGICO MEDIANTE EL USO DE TECNOLOGÍAS TIC - ONCOTIC/
info:eu-repo/grantAgreement/MICINN//TIN2010-20999-C04-01/ES/MODELIZACION BIOMECANICA DE TEJIDOS APLICADO A CIRUGIA ASISTIDA POR ORDENADOR/
Agradecimientos:
This project has been partially funded by MITYC (reference TSI-020100-2009-189), by CDTI (reference IDI-20101153) and by MICINN (reference TIN2010-20999-C04-01). We would like to express our gratitude to the personnel from ...[+]
Tipo: Artículo

References

Ahn, B., & Kim, J. (2009). Efficient soft tissue characterization under large deformations in medical simulations. International Journal of Precision Engineering and Manufacturing, 10(4), 115-121. doi:10.1007/s12541-009-0079-z

AspertN, Santa-CruzD, EbrahimiT. 2002. MESH: measuring errors between surfaces using the hausdorff distance. In: IEEE International Conference in Multimedia and Expo (ICME). Vol. 1. p. 705–708.

Balocco, S., Camara, O., Vivas, E., Sola, T., Guimaraens, L., Gratama van Andel, H. A. F., … Frangi, A. F. (2010). Feasibility of estimating regional mechanical properties of cerebral aneurysmsin vivo. Medical Physics, 37(4), 1689-1706. doi:10.1118/1.3355933 [+]
Ahn, B., & Kim, J. (2009). Efficient soft tissue characterization under large deformations in medical simulations. International Journal of Precision Engineering and Manufacturing, 10(4), 115-121. doi:10.1007/s12541-009-0079-z

AspertN, Santa-CruzD, EbrahimiT. 2002. MESH: measuring errors between surfaces using the hausdorff distance. In: IEEE International Conference in Multimedia and Expo (ICME). Vol. 1. p. 705–708.

Balocco, S., Camara, O., Vivas, E., Sola, T., Guimaraens, L., Gratama van Andel, H. A. F., … Frangi, A. F. (2010). Feasibility of estimating regional mechanical properties of cerebral aneurysmsin vivo. Medical Physics, 37(4), 1689-1706. doi:10.1118/1.3355933

Cárdenes, R., de Luis-García, R., & Bach-Cuadra, M. (2009). A multidimensional segmentation evaluation for medical image data. Computer Methods and Programs in Biomedicine, 96(2), 108-124. doi:10.1016/j.cmpb.2009.04.009

Carter, F. ., Frank, T. ., Davies, P. ., McLean, D., & Cuschieri, A. (2001). Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 5(4), 231-236. doi:10.1016/s1361-8415(01)00048-2

Chui, C., Kobayashi, E., Chen, X., Hisada, T., & Sakuma, I. (2004). Combined compression and elongation experiments and non-linear modelling of liver tissue for surgical simulation. Medical & Biological Engineering & Computing, 42(6), 787-798. doi:10.1007/bf02345212

Chui, C., Kobayashi, E., Chen, X., Hisada, T., & Sakuma, I. (2006). Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling. Medical & Biological Engineering & Computing, 45(1), 99-106. doi:10.1007/s11517-006-0137-y

FungYC. 1996. Biomechanics mechanical properties of soft tissues. 2nd ed.Springer-Verlag.

Gao, Z., & Desai, J. P. (2010). Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation☆☆☆☆☆☆. Medical Image Analysis, 14(2), 126-137. doi:10.1016/j.media.2009.11.002

HausdorffF. 1962. Set of theory. 2nd ed.Chelsea Pub. Co.

HenningerH, ReeseS, AndersonA, WeissJ. 2010. Validation of computational models in biomechanics. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. Vol. 224. p. 801–812.

HuT, DesaiJP. 2003. A biomechanical model of the liver for reality-based haptic feedback. In: Proceedings of the 6th International Conference on Medical Image Computing and Computed-Assisted Intervention. p. 75–82.

Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850-863. doi:10.1109/34.232073

Jordan, P., Socrate, S., Zickler, T. E., & Howe, R. D. (2009). Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging. Journal of the Mechanical Behavior of Biomedical Materials, 2(2), 192-201. doi:10.1016/j.jmbbm.2008.08.006

Kerdok, A. E., Ottensmeyer, M. P., & Howe, R. D. (2006). Effects of perfusion on the viscoelastic characteristics of liver. Journal of Biomechanics, 39(12), 2221-2231. doi:10.1016/j.jbiomech.2005.07.005

Lockett, H., & Guenov, M. (2008). Similarity measures for mid-surface quality evaluation. Computer-Aided Design, 40(3), 368-380. doi:10.1016/j.cad.2007.11.008

Miller, K. (2000). Constitutive modelling of abdominal organs. Journal of Biomechanics, 33(3), 367-373. doi:10.1016/s0021-9290(99)00196-7

Nava, A., Mazza, E., Furrer, M., Villiger, P., & Reinhart, W. H. (2008). In vivo mechanical characterization of human liver. Medical Image Analysis, 12(2), 203-216. doi:10.1016/j.media.2007.10.001

OttensmeyerMP, KerdokAE, HoweRD, DawsonLS. 2004. The effects of testing environment on the viscoelastic properties of soft tissue. In: Proceedings of the International Symposium on Medical Simulation. p. 9–18.

Picinbono, G., Delingette, H., & Ayache, N. (2003). Non-linear anisotropic elasticity for real-time surgery simulation. Graphical Models, 65(5), 305-321. doi:10.1016/s1524-0703(03)00045-6

Picinbono, G., Lombardo, J.-C., Delingette, H., & Ayache, N. (2002). Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. The Journal of Visualization and Computer Animation, 13(3), 147-167. doi:10.1002/vis.257

Sakuma, I., Nishimura, Y., Chui, C. K., Kobayashi, E., Inada, H., Chen, X., & Hisada, T. (2003). In vitro Measurement of Mechanical Properties of Liver Tissue under Compression and Elongation Using a New Test Piece Holding Method with Surgical Glue. Lecture Notes in Computer Science, 284-292. doi:10.1007/3-540-45015-7_27

Samur, E., Sedef, M., Basdogan, C., Avtan, L., & Duzgun, O. (2005). A robotic indenter for minimally invasive characterization of soft tissues. International Congress Series, 1281, 713-718. doi:10.1016/j.ics.2005.03.117

Schwartz, J.-M., Denninger, M., Rancourt, D., Moisan, C., & Laurendeau, D. (2005). Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Medical Image Analysis, 9(2), 103-112. doi:10.1016/j.media.2004.11.002

Shi, H., & Farag, A. (2005). Validating linear elastic and linear viscoelastic models of lamb liver tissue using cone-beam CT. International Congress Series, 1281, 473-478. doi:10.1016/j.ics.2005.03.140

Hongjian Shi, Farag, A. A., Fahmi, R., & Dongqing Chen. (2008). Validation of Finite Element Models of Liver Tissue Using Micro-CT. IEEE Transactions on Biomedical Engineering, 55(3), 978-984. doi:10.1109/tbme.2007.905387

Taylor, Z. A., Comas, O., Cheng, M., Passenger, J., Hawkes, D. J., Atkinson, D., & Ourselin, S. (2009). On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution. Medical Image Analysis, 13(2), 234-244. doi:10.1016/j.media.2008.10.001

UshikiS, MatsugumaC, KoishiT, NakaguchiT, TsumuraN, MiyakeY. 2007. Liver deformation model for two point-contacts based on beam of structural mechanics. In: Information Technology Applications in Biomedicine, 2007. Sixth International Special Topic Conference (ITAB 2007). p. 123–126.

Vigneron, L. M., Boman, R. C., Ponthot, J.-P., Robe, P. A., Warfield, S. K., & Verly, J. G. (2010). Enhanced FEM-based modeling of brain shift deformation in Image-Guided Neurosurgery. Journal of Computational and Applied Mathematics, 234(7), 2046-2053. doi:10.1016/j.cam.2009.08.062

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem