- -

Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Martínez, Francisco es_ES
dc.contributor.author Lago Ángel, Miguel Ángel es_ES
dc.contributor.author Rupérez Moreno, María José es_ES
dc.contributor.author Monserrat Aranda, Carlos es_ES
dc.date.accessioned 2013-07-03T10:09:44Z
dc.date.issued 2012-03-30
dc.identifier.issn 1025-5842
dc.identifier.uri http://hdl.handle.net/10251/30452
dc.description.abstract In this study, six biomechanical models for simulating lamb liver behaviour are presented. They are validated using similarity coefficients from Medical Image on reconstructed volumes from computerised tomography images. In particular, the Jaccard and Hausdorff coefficients are used. Loads of 20 and 40 g are applied to the livers and their deformation is simulated by means of the finite element method. The models used are a linear elastic model, a neo-Hookean model, a Mooney¿Rivlin model, an Ogden model, a linear viscoelastic model and a viscohyperelastic model. The model that provided a behaviour that is closest to reality was the viscohyperelastic model, where the hyperelastic part was modelled with an Ogden model. es_ES
dc.description.sponsorship This project has been partially funded by MITYC (reference TSI-020100-2009-189), by CDTI (reference IDI-20101153) and by MICINN (reference TIN2010-20999-C04-01). We would like to express our gratitude to the personnel from the HCB hospital where the experiments with the CT Machine were carried out. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Computer Methods in Biomechanics and Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Lamb liver es_ES
dc.subject Finite elements es_ES
dc.subject Biomechanical models es_ES
dc.subject Jaccard es_ES
dc.subject Hausdorff es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1080/10255842.2011.637492
dc.relation.projectID info:eu-repo/grantAgreement/MITURCO//TSI-020100-2009-0189/ES/SISTEMA DE NAVEGACIÓN MEDIANTE REALIDAD VIRTUAL EN CIRUGÍA LAPAROSCOPICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IDI-20101153/ES/TERAPIAS ASISTIVAS COLABORATIVAS PARA EL TRATAMIENTO ONCOLÓGICO MEDIANTE EL USO DE TECNOLOGÍAS TIC - ONCOTIC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-20999-C04-01/ES/MODELIZACION BIOMECANICA DE TEJIDOS APLICADO A CIRUGIA ASISTIDA POR ORDENADOR/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Martínez Martínez, F.; Lago Ángel, MÁ.; Rupérez Moreno, MJ.; Monserrat Aranda, C. (2012). Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image. Computer Methods in Biomechanics and Biomedical Engineering. 1-11. https://doi.org/10.1080/10255842.2011.637492 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.tandfonline.com/doi/pdf/10.1080/10255842.2011.637492 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 224011
dc.contributor.funder Ministerio de Industria, Turismo y Comercio es_ES
dc.description.references Ahn, B., & Kim, J. (2009). Efficient soft tissue characterization under large deformations in medical simulations. International Journal of Precision Engineering and Manufacturing, 10(4), 115-121. doi:10.1007/s12541-009-0079-z es_ES
dc.description.references AspertN, Santa-CruzD, EbrahimiT. 2002. MESH: measuring errors between surfaces using the hausdorff distance. In: IEEE International Conference in Multimedia and Expo (ICME). Vol. 1. p. 705–708. es_ES
dc.description.references Balocco, S., Camara, O., Vivas, E., Sola, T., Guimaraens, L., Gratama van Andel, H. A. F., … Frangi, A. F. (2010). Feasibility of estimating regional mechanical properties of cerebral aneurysmsin vivo. Medical Physics, 37(4), 1689-1706. doi:10.1118/1.3355933 es_ES
dc.description.references Cárdenes, R., de Luis-García, R., & Bach-Cuadra, M. (2009). A multidimensional segmentation evaluation for medical image data. Computer Methods and Programs in Biomedicine, 96(2), 108-124. doi:10.1016/j.cmpb.2009.04.009 es_ES
dc.description.references Carter, F. ., Frank, T. ., Davies, P. ., McLean, D., & Cuschieri, A. (2001). Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 5(4), 231-236. doi:10.1016/s1361-8415(01)00048-2 es_ES
dc.description.references Chui, C., Kobayashi, E., Chen, X., Hisada, T., & Sakuma, I. (2004). Combined compression and elongation experiments and non-linear modelling of liver tissue for surgical simulation. Medical & Biological Engineering & Computing, 42(6), 787-798. doi:10.1007/bf02345212 es_ES
dc.description.references Chui, C., Kobayashi, E., Chen, X., Hisada, T., & Sakuma, I. (2006). Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling. Medical & Biological Engineering & Computing, 45(1), 99-106. doi:10.1007/s11517-006-0137-y es_ES
dc.description.references FungYC. 1996. Biomechanics mechanical properties of soft tissues. 2nd ed.Springer-Verlag. es_ES
dc.description.references Gao, Z., & Desai, J. P. (2010). Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation☆☆☆☆☆☆. Medical Image Analysis, 14(2), 126-137. doi:10.1016/j.media.2009.11.002 es_ES
dc.description.references HausdorffF. 1962. Set of theory. 2nd ed.Chelsea Pub. Co. es_ES
dc.description.references HenningerH, ReeseS, AndersonA, WeissJ. 2010. Validation of computational models in biomechanics. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. Vol. 224. p. 801–812. es_ES
dc.description.references HuT, DesaiJP. 2003. A biomechanical model of the liver for reality-based haptic feedback. In: Proceedings of the 6th International Conference on Medical Image Computing and Computed-Assisted Intervention. p. 75–82. es_ES
dc.description.references Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850-863. doi:10.1109/34.232073 es_ES
dc.description.references Jordan, P., Socrate, S., Zickler, T. E., & Howe, R. D. (2009). Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging. Journal of the Mechanical Behavior of Biomedical Materials, 2(2), 192-201. doi:10.1016/j.jmbbm.2008.08.006 es_ES
dc.description.references Kerdok, A. E., Ottensmeyer, M. P., & Howe, R. D. (2006). Effects of perfusion on the viscoelastic characteristics of liver. Journal of Biomechanics, 39(12), 2221-2231. doi:10.1016/j.jbiomech.2005.07.005 es_ES
dc.description.references Lockett, H., & Guenov, M. (2008). Similarity measures for mid-surface quality evaluation. Computer-Aided Design, 40(3), 368-380. doi:10.1016/j.cad.2007.11.008 es_ES
dc.description.references Miller, K. (2000). Constitutive modelling of abdominal organs. Journal of Biomechanics, 33(3), 367-373. doi:10.1016/s0021-9290(99)00196-7 es_ES
dc.description.references Nava, A., Mazza, E., Furrer, M., Villiger, P., & Reinhart, W. H. (2008). In vivo mechanical characterization of human liver. Medical Image Analysis, 12(2), 203-216. doi:10.1016/j.media.2007.10.001 es_ES
dc.description.references OttensmeyerMP, KerdokAE, HoweRD, DawsonLS. 2004. The effects of testing environment on the viscoelastic properties of soft tissue. In: Proceedings of the International Symposium on Medical Simulation. p. 9–18. es_ES
dc.description.references Picinbono, G., Delingette, H., & Ayache, N. (2003). Non-linear anisotropic elasticity for real-time surgery simulation. Graphical Models, 65(5), 305-321. doi:10.1016/s1524-0703(03)00045-6 es_ES
dc.description.references Picinbono, G., Lombardo, J.-C., Delingette, H., & Ayache, N. (2002). Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. The Journal of Visualization and Computer Animation, 13(3), 147-167. doi:10.1002/vis.257 es_ES
dc.description.references Sakuma, I., Nishimura, Y., Chui, C. K., Kobayashi, E., Inada, H., Chen, X., & Hisada, T. (2003). In vitro Measurement of Mechanical Properties of Liver Tissue under Compression and Elongation Using a New Test Piece Holding Method with Surgical Glue. Lecture Notes in Computer Science, 284-292. doi:10.1007/3-540-45015-7_27 es_ES
dc.description.references Samur, E., Sedef, M., Basdogan, C., Avtan, L., & Duzgun, O. (2005). A robotic indenter for minimally invasive characterization of soft tissues. International Congress Series, 1281, 713-718. doi:10.1016/j.ics.2005.03.117 es_ES
dc.description.references Schwartz, J.-M., Denninger, M., Rancourt, D., Moisan, C., & Laurendeau, D. (2005). Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Medical Image Analysis, 9(2), 103-112. doi:10.1016/j.media.2004.11.002 es_ES
dc.description.references Shi, H., & Farag, A. (2005). Validating linear elastic and linear viscoelastic models of lamb liver tissue using cone-beam CT. International Congress Series, 1281, 473-478. doi:10.1016/j.ics.2005.03.140 es_ES
dc.description.references Hongjian Shi, Farag, A. A., Fahmi, R., & Dongqing Chen. (2008). Validation of Finite Element Models of Liver Tissue Using Micro-CT. IEEE Transactions on Biomedical Engineering, 55(3), 978-984. doi:10.1109/tbme.2007.905387 es_ES
dc.description.references Taylor, Z. A., Comas, O., Cheng, M., Passenger, J., Hawkes, D. J., Atkinson, D., & Ourselin, S. (2009). On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution. Medical Image Analysis, 13(2), 234-244. doi:10.1016/j.media.2008.10.001 es_ES
dc.description.references UshikiS, MatsugumaC, KoishiT, NakaguchiT, TsumuraN, MiyakeY. 2007. Liver deformation model for two point-contacts based on beam of structural mechanics. In: Information Technology Applications in Biomedicine, 2007. Sixth International Special Topic Conference (ITAB 2007). p. 123–126. es_ES
dc.description.references Vigneron, L. M., Boman, R. C., Ponthot, J.-P., Robe, P. A., Warfield, S. K., & Verly, J. G. (2010). Enhanced FEM-based modeling of brain shift deformation in Image-Guided Neurosurgery. Journal of Computational and Applied Mathematics, 234(7), 2046-2053. doi:10.1016/j.cam.2009.08.062 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem