Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Martínez, Francisco | es_ES |
dc.contributor.author | Lago Ángel, Miguel Ángel | es_ES |
dc.contributor.author | Rupérez Moreno, María José | es_ES |
dc.contributor.author | Monserrat Aranda, Carlos | es_ES |
dc.date.accessioned | 2013-07-03T10:09:44Z | |
dc.date.issued | 2012-03-30 | |
dc.identifier.issn | 1025-5842 | |
dc.identifier.uri | http://hdl.handle.net/10251/30452 | |
dc.description.abstract | In this study, six biomechanical models for simulating lamb liver behaviour are presented. They are validated using similarity coefficients from Medical Image on reconstructed volumes from computerised tomography images. In particular, the Jaccard and Hausdorff coefficients are used. Loads of 20 and 40 g are applied to the livers and their deformation is simulated by means of the finite element method. The models used are a linear elastic model, a neo-Hookean model, a Mooney¿Rivlin model, an Ogden model, a linear viscoelastic model and a viscohyperelastic model. The model that provided a behaviour that is closest to reality was the viscohyperelastic model, where the hyperelastic part was modelled with an Ogden model. | es_ES |
dc.description.sponsorship | This project has been partially funded by MITYC (reference TSI-020100-2009-189), by CDTI (reference IDI-20101153) and by MICINN (reference TIN2010-20999-C04-01). We would like to express our gratitude to the personnel from the HCB hospital where the experiments with the CT Machine were carried out. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Computer Methods in Biomechanics and Biomedical Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Lamb liver | es_ES |
dc.subject | Finite elements | es_ES |
dc.subject | Biomechanical models | es_ES |
dc.subject | Jaccard | es_ES |
dc.subject | Hausdorff | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1080/10255842.2011.637492 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MITURCO//TSI-020100-2009-0189/ES/SISTEMA DE NAVEGACIÓN MEDIANTE REALIDAD VIRTUAL EN CIRUGÍA LAPAROSCOPICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//IDI-20101153/ES/TERAPIAS ASISTIVAS COLABORATIVAS PARA EL TRATAMIENTO ONCOLÓGICO MEDIANTE EL USO DE TECNOLOGÍAS TIC - ONCOTIC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-20999-C04-01/ES/MODELIZACION BIOMECANICA DE TEJIDOS APLICADO A CIRUGIA ASISTIDA POR ORDENADOR/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.description.bibliographicCitation | Martínez Martínez, F.; Lago Ángel, MÁ.; Rupérez Moreno, MJ.; Monserrat Aranda, C. (2012). Analysis of several biomechanical models for the simulation of lamb liver behaivour using similarity coefficients from medical image. Computer Methods in Biomechanics and Biomedical Engineering. 1-11. https://doi.org/10.1080/10255842.2011.637492 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.tandfonline.com/doi/pdf/10.1080/10255842.2011.637492 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 224011 | |
dc.contributor.funder | Ministerio de Industria, Turismo y Comercio | es_ES |
dc.description.references | Ahn, B., & Kim, J. (2009). Efficient soft tissue characterization under large deformations in medical simulations. International Journal of Precision Engineering and Manufacturing, 10(4), 115-121. doi:10.1007/s12541-009-0079-z | es_ES |
dc.description.references | AspertN, Santa-CruzD, EbrahimiT. 2002. MESH: measuring errors between surfaces using the hausdorff distance. In: IEEE International Conference in Multimedia and Expo (ICME). Vol. 1. p. 705–708. | es_ES |
dc.description.references | Balocco, S., Camara, O., Vivas, E., Sola, T., Guimaraens, L., Gratama van Andel, H. A. F., … Frangi, A. F. (2010). Feasibility of estimating regional mechanical properties of cerebral aneurysmsin vivo. Medical Physics, 37(4), 1689-1706. doi:10.1118/1.3355933 | es_ES |
dc.description.references | Cárdenes, R., de Luis-García, R., & Bach-Cuadra, M. (2009). A multidimensional segmentation evaluation for medical image data. Computer Methods and Programs in Biomedicine, 96(2), 108-124. doi:10.1016/j.cmpb.2009.04.009 | es_ES |
dc.description.references | Carter, F. ., Frank, T. ., Davies, P. ., McLean, D., & Cuschieri, A. (2001). Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 5(4), 231-236. doi:10.1016/s1361-8415(01)00048-2 | es_ES |
dc.description.references | Chui, C., Kobayashi, E., Chen, X., Hisada, T., & Sakuma, I. (2004). Combined compression and elongation experiments and non-linear modelling of liver tissue for surgical simulation. Medical & Biological Engineering & Computing, 42(6), 787-798. doi:10.1007/bf02345212 | es_ES |
dc.description.references | Chui, C., Kobayashi, E., Chen, X., Hisada, T., & Sakuma, I. (2006). Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling. Medical & Biological Engineering & Computing, 45(1), 99-106. doi:10.1007/s11517-006-0137-y | es_ES |
dc.description.references | FungYC. 1996. Biomechanics mechanical properties of soft tissues. 2nd ed.Springer-Verlag. | es_ES |
dc.description.references | Gao, Z., & Desai, J. P. (2010). Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation☆☆☆☆☆☆. Medical Image Analysis, 14(2), 126-137. doi:10.1016/j.media.2009.11.002 | es_ES |
dc.description.references | HausdorffF. 1962. Set of theory. 2nd ed.Chelsea Pub. Co. | es_ES |
dc.description.references | HenningerH, ReeseS, AndersonA, WeissJ. 2010. Validation of computational models in biomechanics. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. Vol. 224. p. 801–812. | es_ES |
dc.description.references | HuT, DesaiJP. 2003. A biomechanical model of the liver for reality-based haptic feedback. In: Proceedings of the 6th International Conference on Medical Image Computing and Computed-Assisted Intervention. p. 75–82. | es_ES |
dc.description.references | Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850-863. doi:10.1109/34.232073 | es_ES |
dc.description.references | Jordan, P., Socrate, S., Zickler, T. E., & Howe, R. D. (2009). Constitutive modeling of porcine liver in indentation using 3D ultrasound imaging. Journal of the Mechanical Behavior of Biomedical Materials, 2(2), 192-201. doi:10.1016/j.jmbbm.2008.08.006 | es_ES |
dc.description.references | Kerdok, A. E., Ottensmeyer, M. P., & Howe, R. D. (2006). Effects of perfusion on the viscoelastic characteristics of liver. Journal of Biomechanics, 39(12), 2221-2231. doi:10.1016/j.jbiomech.2005.07.005 | es_ES |
dc.description.references | Lockett, H., & Guenov, M. (2008). Similarity measures for mid-surface quality evaluation. Computer-Aided Design, 40(3), 368-380. doi:10.1016/j.cad.2007.11.008 | es_ES |
dc.description.references | Miller, K. (2000). Constitutive modelling of abdominal organs. Journal of Biomechanics, 33(3), 367-373. doi:10.1016/s0021-9290(99)00196-7 | es_ES |
dc.description.references | Nava, A., Mazza, E., Furrer, M., Villiger, P., & Reinhart, W. H. (2008). In vivo mechanical characterization of human liver. Medical Image Analysis, 12(2), 203-216. doi:10.1016/j.media.2007.10.001 | es_ES |
dc.description.references | OttensmeyerMP, KerdokAE, HoweRD, DawsonLS. 2004. The effects of testing environment on the viscoelastic properties of soft tissue. In: Proceedings of the International Symposium on Medical Simulation. p. 9–18. | es_ES |
dc.description.references | Picinbono, G., Delingette, H., & Ayache, N. (2003). Non-linear anisotropic elasticity for real-time surgery simulation. Graphical Models, 65(5), 305-321. doi:10.1016/s1524-0703(03)00045-6 | es_ES |
dc.description.references | Picinbono, G., Lombardo, J.-C., Delingette, H., & Ayache, N. (2002). Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. The Journal of Visualization and Computer Animation, 13(3), 147-167. doi:10.1002/vis.257 | es_ES |
dc.description.references | Sakuma, I., Nishimura, Y., Chui, C. K., Kobayashi, E., Inada, H., Chen, X., & Hisada, T. (2003). In vitro Measurement of Mechanical Properties of Liver Tissue under Compression and Elongation Using a New Test Piece Holding Method with Surgical Glue. Lecture Notes in Computer Science, 284-292. doi:10.1007/3-540-45015-7_27 | es_ES |
dc.description.references | Samur, E., Sedef, M., Basdogan, C., Avtan, L., & Duzgun, O. (2005). A robotic indenter for minimally invasive characterization of soft tissues. International Congress Series, 1281, 713-718. doi:10.1016/j.ics.2005.03.117 | es_ES |
dc.description.references | Schwartz, J.-M., Denninger, M., Rancourt, D., Moisan, C., & Laurendeau, D. (2005). Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation. Medical Image Analysis, 9(2), 103-112. doi:10.1016/j.media.2004.11.002 | es_ES |
dc.description.references | Shi, H., & Farag, A. (2005). Validating linear elastic and linear viscoelastic models of lamb liver tissue using cone-beam CT. International Congress Series, 1281, 473-478. doi:10.1016/j.ics.2005.03.140 | es_ES |
dc.description.references | Hongjian Shi, Farag, A. A., Fahmi, R., & Dongqing Chen. (2008). Validation of Finite Element Models of Liver Tissue Using Micro-CT. IEEE Transactions on Biomedical Engineering, 55(3), 978-984. doi:10.1109/tbme.2007.905387 | es_ES |
dc.description.references | Taylor, Z. A., Comas, O., Cheng, M., Passenger, J., Hawkes, D. J., Atkinson, D., & Ourselin, S. (2009). On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution. Medical Image Analysis, 13(2), 234-244. doi:10.1016/j.media.2008.10.001 | es_ES |
dc.description.references | UshikiS, MatsugumaC, KoishiT, NakaguchiT, TsumuraN, MiyakeY. 2007. Liver deformation model for two point-contacts based on beam of structural mechanics. In: Information Technology Applications in Biomedicine, 2007. Sixth International Special Topic Conference (ITAB 2007). p. 123–126. | es_ES |
dc.description.references | Vigneron, L. M., Boman, R. C., Ponthot, J.-P., Robe, P. A., Warfield, S. K., & Verly, J. G. (2010). Enhanced FEM-based modeling of brain shift deformation in Image-Guided Neurosurgery. Journal of Computational and Applied Mathematics, 234(7), 2046-2053. doi:10.1016/j.cam.2009.08.062 | es_ES |