H. R. Bennett and D. J. Lutzer, A note on weak θ-refinability, Gen. Top. Appl., 2 (1972), 49–54.
J. Cao and J. Rodríguez-López, On hyperspace topologies via distance functionals in quasi-metrics spaces, Acta Math. Hungar., 112 (2006), 249–268.
E. Colebunders, S. De Wachter and B. Lowen, Intrinsic approach spaces on domains, Topology Appl., 158 (2011), 2343–2355.
[+]
H. R. Bennett and D. J. Lutzer, A note on weak θ-refinability, Gen. Top. Appl., 2 (1972), 49–54.
J. Cao and J. Rodríguez-López, On hyperspace topologies via distance functionals in quasi-metrics spaces, Acta Math. Hungar., 112 (2006), 249–268.
E. Colebunders, S. De Wachter and B. Lowen, Intrinsic approach spaces on domains, Topology Appl., 158 (2011), 2343–2355.
P. Fletcher and W. F. Lindgren, Quasi-uniform Spaces, Dekker (New York, 1982).
R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures, 7 (1999), 71–83.
J. L. Hursch, Jr., Proximity and height, Math. Scand., 17 (1965), 150–160.
R. Kopperman, S. Matthews and H. Pajoohesh, Partial metrizability in value quantales, Appl. General Topology, 5 (2004), 115–127.
H.-P. A. Künzi, Functorial admissible quasi-uniformities on topological spaces, Topology Appl., 43 (1992), 27–36.
H.-P. A. Künzi, Nonsymmetric topology, in: Topology with Applications, Bolyai Society Mathematical Studies 4 (Szekszárd, Hungary, 1993), pp. 303–338.
H.-P. A. Künzi, Nontransitive quasi-uniformities in the Pervin quasi-proximity class, Proc. Amer. Math. Soc., 130 (2002), 3725–3730.
H.-P. A. Künzi, An introduction to quasi-uniform spaces, in: F. Mynard and E. Pearl (Eds.) Beyond Topology, Contemp. Math. 486 (2009), pp. 239–304.
H.-P. A. Künzi and V. Vajner, Weighted quasi-metrics, in: Proceedings of the 8th Summer Conference on Topology and its Applications, Ann. New York Acad. Sci. 728 (1994), pp. 64–77.
S. G. Matthews, Partial metric topology, in: Proceedings of the 8th Summer Conference on Topology and its Applications, Ann. New York Acad. Sci. 728 (1994), pp. 183–197.
S. Oltra, S. Romaguera and E. A. Sánchez-Pérez, Bicompleting weightable quasi-metric spaces and partial metric spaces, Rend. Circ. Mat. Palermo (2), 51 (2002), 151–162.
S. J. O’Neill, Partial metrics, valuations, and domain theory, in: Proceedings of 11th Summer Conference on Topology and its Applications, Ann. New York Acad. Sci. 806 (1996), pp. 304–315.
J. Rodríguez-López and S. Romaguera, Wijsman and hit-and-miss topologies of quasi-metric spaces, Set-valued Analysis, 11 (2003), 323–344.
J. Rodríguez-López and S. Romaguera, Hypertopologies and asymmetric topology, in: G. di Maio and S. Naimpally (Eds.) Theory and Applications of Proximity, Nearness and Uniformity, Quaderni di Matematica 22 (2009), pp. 315–364.
S. Salbany and S. Romaguera, On countably compact quasi-pseudometrizable spaces, J. Austral. Math. Soc. (Series A), 49 (1990), 231–240.
M. P. Schellekens, A characterization of partial metrizability: domains are quantifiable, Theoret. Comput. Sci., 305 (2003), 409–432.
M. P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci., 315 (2004), 135–149.
E. Szpilrajn, Sur l’extension de l’ordre partiel, Fund. Math., 16 (1930), 386–389.
P. Vitolo, The representation of weighted quasi-metric spaces, Rend. Istit. Mat. Univ. Trieste, 31 (1999), 95–100.
P. Waszkiewicz, The local triangle axiom in topology and domain theory, Appl. General Topology, 4 (2003), 47–70.
[-]