- -

Groundwater flow inverse modeling in non-MultiGaussian media: Performance assessment of the normal-score Ensemble Kalman Filter

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Groundwater flow inverse modeling in non-MultiGaussian media: Performance assessment of the normal-score Ensemble Kalman Filter

Show simple item record

Files in this item

dc.contributor.author Li, Liangping es_ES
dc.contributor.author Zhou, Haiyan es_ES
dc.contributor.author Hendricks-Franssen, Hendrikus Johannes es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.date.accessioned 2013-07-05T10:28:48Z
dc.date.available 2013-07-05T10:28:48Z
dc.date.issued 2012
dc.identifier.issn 1027-5606
dc.identifier.uri http://hdl.handle.net/10251/30679
dc.description.abstract [EN] The normal-score ensemble Kalman filter (NS-EnKF) is tested on a synthetic aquifer characterized by the presence of channels with a bimodal distribution of its hydraulic conductivities. This is a clear example of an aquifer that cannot be characterized by a multiGaussian distribution. Fourteen scenarios are analyzed which differ among them in one or various of the following aspects: the prior random function model, the boundary conditions of the flow problem, the number of piezometers used in the assimilation process, or the use of covariance localization in the implementation of the Kalman filter. The performance of the NS-EnKF is evaluated through the ensemble mean and variance maps, the connectivity patterns of the individual conductivity realizations and the degree of reproduction of the piezometric heads. The results show that (i) the localized NS-EnKF can characterize the non-multiGaussian underlying hydraulic distribution even when an erroneous prior random function model is used, (ii) localization plays an important role to prevent filter inbreeding and results in a better logconductivity characterization, and (iii) the NS-EnKF works equally well under very different flow configurations. © Author(s) 2012. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. The two anonymous reviewers are gratefully acknowledged for their comments which helped improving the final version of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher European Geosciences Union (EGU) es_ES
dc.relation MICINN/CGL2011-23295 es_ES
dc.relation.ispartof Hydrology and Earth System Sciences and Discussions es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bimodal distribution es_ES
dc.subject Connectivity pattern es_ES
dc.subject Ensemble Kalman Filter es_ES
dc.subject Flow configurations es_ES
dc.subject Flow problems es_ES
dc.subject Inverse modeling es_ES
dc.subject Performance assessment es_ES
dc.subject Pie- zometric Head es_ES
dc.subject Random function model es_ES
dc.subject Synthetic aquifers es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Groundwater flow inverse modeling in non-MultiGaussian media: Performance assessment of the normal-score Ensemble Kalman Filter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/hess-16-573-2012
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Li, L.; Zhou, H.; Hendricks-Franssen, HJ.; Gómez-Hernández, JJ. (2012). Groundwater flow inverse modeling in non-MultiGaussian media: Performance assessment of the normal-score Ensemble Kalman Filter. Hydrology and Earth System Sciences and Discussions. 16(2):573-590. doi:10.5194/hess-16-573-2012 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.5194/hess-16-573-2012 es_ES
dc.description.upvformatpinicio 573 es_ES
dc.description.upvformatpfin 590 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 233948
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.relation.references Alcolea, A. and Renard, P.: Blocking Moving Window algorithm: Conditioning multiple-point simulations to hydrogeological data, Water Resour. Res., 46, W08511, https://doi.org/10.1029/2009WR007943, 2010. es_ES
dc.relation.references Alcolea, A., Carrera, J., and Medina, A.: Pilot points method incorporating prior information for solving the groundwater flow inverse problem, Adv. Water Resour., 29, 1678–1689, 2006. es_ES
dc.relation.references Anderson, J.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001. es_ES
dc.relation.references Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE T. Signal Process., 50, 174–188, 2002. es_ES
dc.relation.references Bear, J.: Dynamics of fluids in porous media, American Elsevier Pub. Co., New York, 1972. es_ES
dc.relation.references Burgers, G., van Leeuwen, P., and Evensen, G.: Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724, 1998. es_ES
dc.relation.references Capilla, J. and Llopis-Albert, C.: Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory, J. Hydrol., 371, 66–74, 2009. es_ES
dc.relation.references Capilla, J. E., Rodrigo, J., and G{ó}mez-Hern{á}ndez, J. J.: Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information, Math. Geol., 31, 907–927, 1999. es_ES
dc.relation.references Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., and Slooten, L.: Inverse problem in hydrogeology, Hydrogeol. J., 13, 206–222, 2005. es_ES
dc.relation.references Chen, Y. and Oliver, D.: Cross-covariances and localization for EnKF in multiphase flow data assimilation, Computational Geosciences, 1–23, 2010. es_ES
dc.relation.references Chen, Y. and Zhang, D.: Data assimilation for transient flow in geologic formations via ensemble Kalman filter, Adv. Water Resour., 29, 1107–1122, 2006. es_ES
dc.relation.references Deutsch, C. V. and Journel, A. G.: GSLIB, Geostatistical Software Library and User's Guide, 2nd Edn., Oxford University Press, New York, 1998. es_ES
dc.relation.references Devegowda, D., Arroyo-Negrete, E., and Datta-Gupta, A.: Flow relevant covariance localization during dynamic data assimilation using EnKF, Adv. Water Resour., 33, 129–145, 2010. es_ES
dc.relation.references Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, 2003. es_ES
dc.relation.references Fern{à}ndez-Garcia, D., Trinchero, P., and Sanchez-Vila, X.: Conditional stochastic mapping of transport connectivity, Water Resour. Res., 46, W10515, https://doi.org/10.1029/2009WR008533, 2010. es_ES
dc.relation.references Feyen, L. and Caers, J.: Multiple-point geostatistics: a powerful tool to improve groundwater flow and transport predictions in multi-modal formations, Geostatistics for Environmental Applications, Springer, Berlin, Heidelberg, New York, 197–208, 2005. es_ES
dc.relation.references Fu, J. and G{ó}mez-Hern{á}ndez, J. J.: A Blocking Markov Chain Monte Carlo Method for Inverse Stochastic Hydrogeological Modeling, Math. Geosci., 41, 105–128, 2009. es_ES
dc.relation.references Gaspari, G. and Cohn, S.: Construction of correlation functions in two and three dimensions, Q. J. Roy. Meteorol. Soc., 125, 723–757, 1999. es_ES
dc.relation.references Gómez-Hernández, J. J. and Journel, A. G.: Joint sequential simulation of multi-Gaussian fields, Geostat. Troia, 92, 85–94, 1993. es_ES
dc.relation.references Gómez-Hernández, J. J. and Srivastava, R. M.: ISIM3D: An ANSI-C Three Dimensional Multiple Indicator Conditional Simulation Program, Comput. Geosci., 16, 395–440, 1990. es_ES
dc.relation.references G{ó}mez-Hern{á}ndez, J. and Wen, X.: To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology, Adv. Water Resour., 21, 47–61, 1998. es_ES
dc.relation.references Gómez-Hernández, J. J., Sahuquillo, A., and Capilla, J. E.: Stochastic Simulation of Transmissivity Fields Conditional to Both Transmissivity and Piezometric Data, 1, {T}heory, J. Hydrol., 203, 162–174, 1997. es_ES
dc.relation.references Goovaerts, P.: Geostatistics for natural resources evaluation, Oxford University Press, USA, 1997. es_ES
dc.relation.references Hamill, T., Whitaker, J., and Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Weather Rev., 129, 2776–2790, 2001. es_ES
dc.relation.references Harbaugh, A. W., Banta, E. R., Hill, M. C., and McDonald, M. G.: MODFLOW-2000, the U.S. Geological Survey modular ground-water model, U.S. Geological Survey, Branch of Information Services, Reston, VA, Denver, CO, 2000. es_ES
dc.relation.references Hendricks Franssen, H. and Kinzelbach, W.: Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem, Water Resour. Res., 44, W09408, https://doi.org/10.1029/2007WR006505, 2008. es_ES
dc.relation.references Hendricks Franssen, H. and Kinzelbach, W.: Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems, J. Hydrol., 365, 261–274, 2009. es_ES
dc.relation.references Hendricks Franssen, H., G{ó}mez-Hern{á}ndez, J., and Sahuquillo, A.: Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data, J. Hydrol., 281, 281–295, 2003. es_ES
dc.relation.references Hendricks Franssen, H., Alcolea, A., Riva, M., Bakr, M., van der Wiel, N., Stauffer, F., and Guadagnini, A.: A comparison of seven methods for the inverse modelling of groundwater flow. Application to the characterisation of well catchments, Adv. Water Resour., 32, 851–872, 2009. es_ES
dc.relation.references Hendricks Franssen, H. H. P., Kaiser, U. K., Bauser, G., Stauffer, F., Mueller, R., and Kinzelbach, W.: Operational real-time modeling with EnKF of variably saturated subsurface flow including stream-aquifer interaction and parameter updating, Water Resour. Res., 47, W02532, https://doi.org/10.1029/2010WR009480, 2011. es_ES
dc.relation.references Hu, L. Y.: Gradual Deformation and Iterative Calibration of Gaussian-Related Stochastic Models, Math. Geol., 32, 87–108, 2000. es_ES
dc.relation.references Huang, C., Hu, B. X., Li, X., and Ye, M.: Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source, Stoch. Environ. Res. Risk Assess., 23, 1155–1167, 2008. es_ES
dc.relation.references Kerrou, J., Renard, P., Hendricks Franssen, H., and Lunati, I.: Issues in characterizing heterogeneity and connectivity in non-multiGaussian media, Adv. Water Resour., 31, 147–159, 2008. es_ES
dc.relation.references Knudby, C. and Carrera, J.: On the relationship between indicators of geostatistical, flow and transport connectivity, Adv. Water Resour., 28, 405–421, 2005. es_ES
dc.relation.references LaVenue, A. M., Ramarao, B. S., {d}e Marsily, G., and Marietta, M. G.: Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields, 2, {A}pplication, Water Resour. Res., 31, 495–516, 1995. es_ES
dc.relation.references Lee, S., Carle, S., and Fogg, G.: Geologic heterogeneity and a comparison of two geostatistical models: Sequential Gaussian and transition probability-based geostatistical simulation, Adv. Water Resour., 30, 1914–1932, 2007. es_ES
dc.relation.references Li, L., Zhou, H., and Gómez-Hernández, J. J.: Steady-state groundwater flow modeling with full tensor conductivities using finite differences, Comput. Geosci., 36, 1211–1223, https://doi.org/10.1016/j.cageo.2010.04.002, 2010. es_ES
dc.relation.references Li, L., Zhou, H., and Gómez-Hernández, J. J.: A comparative study of three-dimensional hydrualic conductivity upscaling at the Macrodispersion Experiment (MADE) site, Columbus Air Force Base, Mississippi (USA), J. Hydrol., 404, 278–293, https://doi.org/10.1016/j.jhydrol.2011.05.001, 2011a. es_ES
dc.relation.references Li, L., Zhou, H., and Gómez-Hernández, J. J.: Transport Upscaling Using Multi-rate Mass Transfer in Three-dimensional Highly Heterogeneous Porous Media, Adv. Water Resour., 34, 478–489, https://doi.org/10.1016/j.advwatres.2011.01.001, 2011b. es_ES
dc.relation.references Li, L., Zhou, H., Gómez-Hernández, J. J., and Hendricks Franssen, H.: Jointly Mapping Hydraulic Conductivity and Porosity by Assimilating Concentration Data via Ensemble Kalman Filter, J. Hydrol., https://doi.org/10.1016/j.jhydrol.2012.01.037, in press, 2012a. es_ES
dc.relation.references Li, L., Zhou, H., Hendricks Franssen, H., and Gómez-Hernández, J. J.: Modeling transient flow by coupling Ensemble Kalman Filtering and upscaling, Water Resour. Res., 48, W01537, https://doi.org/10.1029/2010WR010214, 2012b. es_ES
dc.relation.references Mariethoz, G., Renard, P., and Caers, J.: Bayesian inverse problem and optimization with iterative spatial resampling, Water Resour. Res., 46, W11530, https://doi.org/10.1029/2010WR009274, 2010a. es_ES
dc.relation.references Mariethoz, G., Renard, P., and Straubhaar, J.: The Direct Sampling method to perform multiple-point geostatistical simulations, Water Resour. Res., 46, W11536, https://doi.org/10.1029/2008WR007621, 2010b. es_ES
dc.relation.references McLaughlin, D. and Townley, L.: A reassessment of the groundwater inverse problem, Water Resour. Res., 32, 1131–1161, 1996. es_ES
dc.relation.references Nan, T. and Wu, J.: Groundwater parameter estimation using the ensemble Kalman filter with localization, Hydrogeol. J., 19, 1–15, 2010. es_ES
dc.relation.references Nowak, W.: Best unbiased ensemble linearization and the quasi-linear Kalman ensemble generator, Water Resour. Res., 45, W04431, https://doi.org/10.1029/2008WR007328, 2009. es_ES
dc.relation.references Oliver, D., Cunha, L., and Reynolds, A.: Markov chain Monte Carlo methods for conditioning a permeability field to pressure data, Math. Geol., 29, 61–91, 1997. es_ES
dc.relation.references Pardo-Ig{ú}zquiza, E. and Dowd, P.: CONNEC3D: a computer program for connectivity analysis of 3D random set models, Comput. Geosci., 29, 775–785, 2003. es_ES
dc.relation.references Ramarao, B. S., LaVenue, A. M., {d}e Marsily, G., and Marietta, M. G.: Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields, 1, {T}heory and computational experiments, Water Resour. Res., 31, 475–493, 1995. es_ES
dc.relation.references Reichle, R., Walker, J., Koster, R., and Houser, P.: Extended versus ensemble Kalman filtering for land data assimilation, J. Hydrometeorol., 3, 728–740, 2002. es_ES
dc.relation.references Sahuquillo, A., Capilla, J. E., Gómez-Hernández, J. J., and Andreu, J.: Conditional simulation of transmissivity fields honouring piezometric head data, in: Hydraulic Engineering Software IV, Fluid Flow Modeling, edited by: Blair, W. R. and Cabrera, E., vol. II, Elsevier Applied Science, London, UK, 201–214, 1992. es_ES
dc.relation.references Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34, 1–21, 2002. es_ES
dc.relation.references Sun, A. Y., Morris, A. P., and Mohanty, S.: Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques, Water Resour. Res., 45, W07424, https://doi.org/10.1029/2008WR007443, 2009. es_ES
dc.relation.references Wen, X. and G{ó}mez-Hern{á}ndez, J.: Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models, J. Contam. Hydrol., 30, 129–156, 1998. es_ES
dc.relation.references Wen, X., Deutsch, C., and Cullick, A.: Construction of geostatistical aquifer models integrating dynamic flow and tracer data using inverse technique, J. Hydrol., 255, 151–168, 2002. es_ES
dc.relation.references Wen, X. H. and Chen, W.: Real-time reservoir model updating using ensemble Kalman filter, in: SPE reservoir simulation symposium, 2005. es_ES
dc.relation.references Western, A., Bloschl, G., and Grayson, R.: Toward capturing hydrologically significant connectivity in spatial patterns, Water Resour. Res., 37, 83–97, 2001. es_ES
dc.relation.references Wu, J., Boucher, A., and Zhang, T.: A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM, Comput. Geosci., 34, 1863–1876, 2008. es_ES
dc.relation.references Yeh, W.: Review of parameter identification procedures in groundwater hydrology: The inverse problem, Water Resour. Res., 22, 95–108, 1986. es_ES
dc.relation.references Zhou, H., Li, L., and Gómez-Hernández, J. J.: Three-dimensional hydraulic conductivity upscaling in groundwater modelling, Comput. Geosci., 36, 1224–1235, https://doi.org/10.1016/j.cageo.2010.03.008, 2010. es_ES
dc.relation.references Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H., and Li, L.: An approach to handling non-Gaussianity of parameters and state variables in Ensemble Kalman Filtering, Adv. Water Resour., 34, 844–864, https://doi.org/10.1016/j.advwatres.2011.04.014, 2011. es_ES
dc.relation.references Zhou, H., Gómez-Hernández, J. J., and Li, L.: A pattern search based inverse method, Water Resour. Res., https://doi.org/10.1029/2011WR011195, in press, 2012a. es_ES
dc.relation.references Zhou, H., Gómez-Hernández, J. J., and Li, L.: Inverse methods in hydrogeology: trajectory and future trends, J. Hydrol., in review, 2012b. es_ES
dc.relation.references Zhou, H., Li, L., Gómez-Hernández, J. J., and Hendricks Franssen, H.: Pattern identification in bimodal aquifer by normal score Ensemble Kalman Filter, Math. Geosci., 44, 169–185, https://doi.org/10.1007/s11004-011-9372-3, 2012c. es_ES
dc.relation.references Zimmerman, D., De Marsily, G., Gotway, C., Marietta, M., Axness, C., Beauheim, R., Bras, R., Carrera, J., Dagan, G., Davies, P., Gallegos, P., Galli, A., Gomez-Hernandez, J., Grindrod, P., Gutjahr, A., Kitanidis, P., Lavenue, A., McLaughlin, D., Neuman, S., RamaRao, B., Ravenne, C., and Rubin, Y.: A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow, Water Resour. Res., 34, 1373–1413, 1998. es_ES
dc.relation.references Zinn, B. and Harvey, C. F.: When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields, Water Resour. Res., 39, 1051, https://doi.org/10.1029/2001WR001146, 2003. es_ES


This item appears in the following Collection(s)

Show simple item record